Robust Multi-View Clustering With Incomplete Information

被引:167
|
作者
Yang, Mouxing [1 ]
Li, Yunfan [1 ]
Hu, Peng [1 ]
Bai, Jinfeng [2 ]
Lv, Jiancheng [1 ]
Peng, Xi [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] TAL AI Lab, Beijing 100080, Peoples R China
基金
国家重点研发计划;
关键词
Unsupervised multi-view representation learning; multi-view clustering; partially view-unaligned problem; partially sample-missing problem; false negatives;
D O I
10.1109/TPAMI.2022.3155499
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The success of existing multi-view clustering methods heavily relies on the assumption of view consistency and instance completeness, referred to as the complete information. However, these two assumptions would be inevitably violated in data collection and transmission, thus leading to the so-called Partially View-unaligned Problem (PVP) and Partially Sample-missing Problem (PSP). To overcome such incomplete information challenges, we propose a novel method, termed robuSt mUlti-view clusteRing with incomplEte information (SURE), which solves PVP and PSP under a unified framework. In brief, SURE is a novel contrastive learning paradigm which uses the available pairs as positives and randomly chooses some cross-view samples as negatives. To reduce the influence of the false negatives caused by random sampling, SURE is with a noise-robust contrastive loss that theoretically and empirically mitigates or even eliminates the influence of the false negatives. To the best of our knowledge, this could be the first successful attempt that simultaneously handles PVP and PSP using a unified solution. In addition, this could be one of the first studies on the noisy correspondence problem (i.e., the false negatives) which is a novel paradigm of noisy labels. Extensive experiments demonstrate the effectiveness and efficiency of SURE comparing with 10 state-of-the-art approaches on the multi-view clustering task.
引用
收藏
页码:1055 / 1069
页数:15
相关论文
共 50 条
  • [21] Online Binary Incomplete Multi-view Clustering
    Yang, Longqi
    Zhang, Liangliang
    Tang, Yuhua
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT I, 2021, 12457 : 75 - 90
  • [22] Online Multi-view Clustering with Incomplete Views
    Shao, Weixiang
    He, Lifang
    Lu, Chun-ta
    Yu, Philip S.
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 1012 - 1017
  • [23] Efficient and Effective Incomplete Multi-View Clustering
    Liu, Xinwang
    Zhu, Xinzhong
    Li, Miaomiao
    Tang, Chang
    Zhu, En
    Yin, Jianping
    Gao, Wen
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4392 - 4399
  • [24] Dynamic Incomplete Multi-view Imputing and Clustering
    Li, Xingfeng
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yinghui
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3412 - 3420
  • [25] Incomplete multi-view clustering based on hypergraph
    Chen, Jin
    Xu, Huafu
    Xue, Jingjing
    Gao, Quanxue
    Deng, Cheng
    Lv, Ziyu
    INFORMATION FUSION, 2025, 117
  • [26] Incomplete multi-view clustering with multiple imputation and ensemble clustering
    Guoqing Chao
    Songtao Wang
    Shiming Yang
    Chunshan Li
    Dianhui Chu
    Applied Intelligence, 2022, 52 : 14811 - 14821
  • [27] Incomplete multi-view clustering with multiple imputation and ensemble clustering
    Chao, Guoqing
    Wang, Songtao
    Yang, Shiming
    Li, Chunshan
    Chu, Dianhui
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14811 - 14821
  • [28] Deep spectral clustering network for incomplete multi-view clustering
    Li, Ao
    Mei, Sanlin
    Feng, Cong
    Gao, Tianyu
    Huang, Hai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [29] The multi-view information bottleneck clustering
    Gao, Yan
    Gu, Shiwen
    Li, Jianhua
    Liao, Zhining
    ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS, 2007, 4443 : 912 - +
  • [30] Robust tensor ring-based graph completion for incomplete multi-view clustering
    Xing, Lei
    Chen, Badong
    Yu, Changyuan
    Qin, Jing
    INFORMATION FUSION, 2024, 111