A Support Vector Based Hybrid Forecasting Model for Chaotic Time Series: Spare Part Consumption Prediction

被引:6
|
作者
Sareminia, Saba [1 ,2 ]
机构
[1] Isfahan Univ Technol, Dept Ind & Syst Engn, Esfahan 8415683111, Iran
[2] Isfahan Univ Technol, Business Intelligence & Knowledge Management Res, Esfahan 8415683111, Iran
关键词
Chaotic time series; Spare part forecasting; Support vector machine; ARIMA; Three-layer feed-forward neural network; EXTREME LEARNING-MACHINE;
D O I
10.1007/s11063-022-10986-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reliability of spare parts inventory in the company is one of the most significant challenges in the field of maintenance and repairs, but on the other hand, the liquidity crisis resulting from the purchase of surplus spare parts is another challenge facing the organizational financial field. Accordingly, accurate forecasting of future consumption is one of the most important solutions for inventory control systems. But because of the impact of so many variables on spare part consumption, most real-world data is chaotic. This leads to the use of classical methods to predict future demand, with high error and low reliability. In this research, a novel and reliable hybrid model based on the support vector machine (SVM), and two single algorithms (STL Decomposed ARIMA and three-layer feed-forward neural network) has been presented to predict the future consumption of spare parts. The proposed model (SVM-ARIMA-3LFFNN hybrid model) also experiments on several chaotic time series in the rapid miner repositories. The forecasting results indicate that the proposed hybrid model attains superior performance compared with a single model and can adapt to chaotic time series. Performance criteria considered in this study are MAE, RMSE, MAPE, and sMAPE. The results indicate that the proposed model can improve the RMSE, MAPE, and sMAPE (up to 30% improvement).
引用
收藏
页码:2825 / 2841
页数:17
相关论文
共 50 条
  • [41] Chaotic time series prediction using fuzzy sigmoid kernel-based support vector machines
    Liu Han
    Liu Ding
    Deng Ling-Feng
    CHINESE PHYSICS, 2006, 15 (06): : 1196 - 1200
  • [42] A hybrid Forecasting Model of Discharges based on Support Vector Machine
    Li Shijin
    Jiang Lingling
    Zhu Yuelong
    Bo Ping
    2012 INTERNATIONAL CONFERENCE ON MODERN HYDRAULIC ENGINEERING, 2012, 28 : 136 - 141
  • [43] Time series forecasting method of building energy consumption using support vector regression
    Liu, Dandan
    Chen, Qijun
    Mori, Kazuyuki
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1628 - 1632
  • [44] Chaotic time series forecasting using online least squares support vector machine regression
    Ye, MY
    Wang, XD
    Zhang, HR
    ACTA PHYSICA SINICA, 2005, 54 (06) : 2568 - 2573
  • [45] On a model approach to forecasting of chaotic time series
    Kidachi, H
    PROGRESS OF THEORETICAL PHYSICS, 2000, 103 (03): : 497 - 518
  • [46] A combination forecasting model to chaotic time series
    Liu, Bin-Sheng
    Pan, Qi-Shu
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 803 - +
  • [47] Optimizing of support vector machine time series forecasting model parameters based on genetic algorithms
    Civil Aviation College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
    Yi Qi Yi Biao Xue Bao, 2006, 9 (1080-1084):
  • [48] Time series forecasting based on wavelet KPCA and support vector machine
    Chen, Fei
    Han, Chongzhao
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1487 - 1491
  • [49] Rejection Based Support Vector Machines for Financial Time Series Forecasting
    Rosowsky, Yasin I.
    Smith, Robert E.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [50] An EMD-Based Chaotic Least Squares Support Vector Machine Hybrid Model for Annual Runoff Forecasting
    Zhao, Xuehua
    Chen, Xu
    Xu, Yongxin
    Xi, Dongjie
    Zhang, Yongbo
    Zheng, Xiuqing
    WATER, 2017, 9 (03):