Multi-Agent Transfer Reinforcement Learning for Resource Management in Underwater Acoustic Communication Networks

被引:0
|
作者
Wang, Hui [1 ,2 ]
Wu, Hongrun [1 ,2 ]
Chen, Yingpin [1 ,2 ]
Ma, Biyang [3 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Zhangzhou 363000, Peoples R China
[2] Minnan Normal Univ, Key Lab Light Field Manipulat & Syst Integrat Appl, Zhangzhou 363000, Peoples R China
[3] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater acoustic communication networks (UACNs); transfer Dyna-Q; multi-agent; resource management; user service quality; DEEP NEURAL-NETWORKS; POWER ALLOCATION; PROTOCOL; INTERNET; DESIGN;
D O I
10.1109/TNSE.2023.3335973
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the application of self-organizing networks in solving the interference problem in underwater acoustic communication networks (UACNs) with the coexistence of multi-node. In this network, each node autonomously adjusts its power based on locally observed information without central controller intervention. Considering the non-convexity of the optimization problem with quality-of-service constraints and the dynamic nature of the underwater environment, we propose a reinforcement learning (RL)-based approach coupled with a distributed coordination mechanism, namely the multi-agent-based transfer Dyna-Q algorithm (MA-TDQ). This algorithm combines Q-learning with Dyna structure and transfer learning, and can quickly obtain optimal intelligent resource management strategies. Furthermore, we rigorously demonstrate the convergence of the MA-TDQ algorithm to Nash equilibrium. Simulation results indicate that the proposed distributed coordination learning algorithm outperforms other existing learning algorithms in terms of learning efficiency, network transmission rate, and communication service quality.
引用
收藏
页码:2012 / 2023
页数:12
相关论文
共 50 条
  • [41] Biases for Emergent Communication in Multi-agent Reinforcement Learning
    Eccles, Tom
    Bachrach, Yoram
    Lever, Guy
    Lazaridou, Angeliki
    Graepel, Thore
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Multi-agent deep reinforcement learning based resource management in heterogeneous V2X networks
    Zhao, Junhui
    Hu, Fajin
    Li, Jiahang
    Nie, Yiwen
    Digital Communications and Networks, 2025, 11 (01) : 182 - 190
  • [43] Multi-agent deep reinforcement learning based resource management in heterogeneous V2X networks
    Junhui Zhao
    Fajin Hu
    Jiahang Li
    Yiwen Nie
    Digital Communications and Networks, 2025, 11 (01) : 182 - 190
  • [44] Dynamic resource management in integrated NOMA terrestrial-satellite networks using multi-agent reinforcement learning
    Nauman, Ali
    Alshahrani, Haya Mesfer
    Nemri, Nadhem
    Othman, Kamal M.
    Aljehane, Nojood O.
    Maashi, Mashael
    Dutta, Ashit Kumar
    Assiri, Mohammed
    Khan, Wali Ullah
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 221
  • [45] Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks
    Peng, Haixia
    Shen, Xuemin
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (01) : 131 - 141
  • [46] Multi-Agent Reinforcement Learning for Resource Allocation in Io T Networks with Edge Computing
    Xiaolan Liu
    Jiadong Yu
    Zhiyong Feng
    Yue Gao
    中国通信, 2020, 17 (09) : 220 - 236
  • [47] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Yi Liu
    Xiang Wu
    Yuming Bo
    Jiacun Wang
    Lifeng Ma
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [48] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Liu, Yi
    Wu, Xiang
    Bo, Yuming
    Wang, Jiacun
    Ma, Lifeng
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (11) : 2346 - 2348
  • [49] DISTRIBUTED RESOURCE ALLOCATION IN 5G NETWORKS WITH MULTI-AGENT REINFORCEMENT LEARNING
    Menard, Jon
    Al-Habashna, Ala'a
    Wainer, Gabriel
    Boudreau, Gary
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 802 - 813
  • [50] Deep Multi-Agent Reinforcement Learning for Resource Allocation in D2D Communication Underlaying Cellular Networks
    Zhang, Xu
    Lin, Ziqi
    Ding, Beichen
    Gu, Bo
    Han, Yu
    APNOMS 2020: 2020 21ST ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2020, : 55 - 60