Multi-Agent Transfer Reinforcement Learning for Resource Management in Underwater Acoustic Communication Networks

被引:0
|
作者
Wang, Hui [1 ,2 ]
Wu, Hongrun [1 ,2 ]
Chen, Yingpin [1 ,2 ]
Ma, Biyang [3 ]
机构
[1] Minnan Normal Univ, Sch Phys & Informat Engn, Zhangzhou 363000, Peoples R China
[2] Minnan Normal Univ, Key Lab Light Field Manipulat & Syst Integrat Appl, Zhangzhou 363000, Peoples R China
[3] Minnan Normal Univ, Sch Comp Sci, Zhangzhou 363000, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater acoustic communication networks (UACNs); transfer Dyna-Q; multi-agent; resource management; user service quality; DEEP NEURAL-NETWORKS; POWER ALLOCATION; PROTOCOL; INTERNET; DESIGN;
D O I
10.1109/TNSE.2023.3335973
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the application of self-organizing networks in solving the interference problem in underwater acoustic communication networks (UACNs) with the coexistence of multi-node. In this network, each node autonomously adjusts its power based on locally observed information without central controller intervention. Considering the non-convexity of the optimization problem with quality-of-service constraints and the dynamic nature of the underwater environment, we propose a reinforcement learning (RL)-based approach coupled with a distributed coordination mechanism, namely the multi-agent-based transfer Dyna-Q algorithm (MA-TDQ). This algorithm combines Q-learning with Dyna structure and transfer learning, and can quickly obtain optimal intelligent resource management strategies. Furthermore, we rigorously demonstrate the convergence of the MA-TDQ algorithm to Nash equilibrium. Simulation results indicate that the proposed distributed coordination learning algorithm outperforms other existing learning algorithms in terms of learning efficiency, network transmission rate, and communication service quality.
引用
收藏
页码:2012 / 2023
页数:12
相关论文
共 50 条
  • [1] Multi-Agent Deep Reinforcement Learning for Distributed Resource Management in Wirelessly Powered Communication Networks
    Hwang, Sangwon
    Kim, Hanjin
    Lee, Hoon
    Lee, Inkyu
    IEEE Transactions on Vehicular Technology, 2020, 69 (11): : 14055 - 14060
  • [2] Multi-Agent Deep Reinforcement Learning for Distributed Resource Management in Wirelessly Powered Communication Networks
    Hwang, Sangwon
    Kim, Hanjin
    Lee, Hoon
    Lee, Inkyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 14055 - 14060
  • [3] A Multi-agent Reinforcement Learning-Based Transmission Protocol for Underwater Acoustic Networks
    Gao, Yu
    Bi, Zhicheng
    Wang, Chaofeng
    17TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, WUWNET 2023, 2024,
  • [4] Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning
    Naderializadeh, Navid
    Sydir, Jaroslaw J.
    Simsek, Meryem
    Nikopour, Hosein
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (06) : 3507 - 3523
  • [5] Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning
    Naderializadeh, Navid
    Sydir, Jaroslaw
    Simsek, Meryem
    Nikopour, Hosein
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [6] MAC Protocol for Underwater Acoustic Multi-Cluster Networks Based on Multi-Agent Reinforcement Learning
    Huang, Jiajie
    Ye, Xiaowen
    Fu, Liqun
    17TH ACM INTERNATIONAL CONFERENCE ON UNDERWATER NETWORKS & SYSTEMS, WUWNET 2023, 2024,
  • [7] Multi-agent deep reinforcement learning based multiple access for underwater acoustic sensor networks
    Zhang, Yuzhi
    Han, Xiang
    Bai, Ran
    Jia, Menglei
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120
  • [8] Resource allocation strategy for vehicular communication networks based on multi-agent deep reinforcement learning
    Liu, Zhibin
    Deng, Yifei
    VEHICULAR COMMUNICATIONS, 2025, 53
  • [9] Multi-Agent Reinforcement Learning Based Channel Access Scheme for Underwater Optical Wireless Communication Networks
    Zhang, Zenghui
    Zhang, Lin
    Chen, Zuwei
    2021 15TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION AND COMMUNICATION TECHNOLOGY (ISMICT), 2021, : 65 - 69
  • [10] Multi-Agent Reinforcement Learning for Slicing Resource Allocation in Vehicular Networks
    Cui, Yaping
    Shi, Hongji
    Wang, Ruyan
    He, Peng
    Wu, Dapeng
    Huang, Xinyun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 2005 - 2016