Machine Learning Technique for the Prediction of Blended Concrete Compressive Strength

被引:2
|
作者
Jubori, Dawood S. A. [1 ]
Nabilah, Abu B. [1 ]
Safiee, Nor A. [1 ]
Alias, Aidi H. [1 ]
Nasir, Noor A. M. [1 ]
机构
[1] Univ Putra Malaysia, Dept Civil Engn, Serdang 43400, Selangor, Malaysia
关键词
Compressive strength; Artificial neural network; Cement replacement; Pozzolana; Sustainable concrete; SELF-COMPACTING CONCRETE; FLY-ASH; SILICA FUME; MECHANICAL-PROPERTIES; CONSOLIDATING CONCRETE; DRYING SHRINKAGE; OPTIMUM USAGE; PERFORMANCE; GGBS; RESISTANCE;
D O I
10.1007/s12205-024-0854-5
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Predicting concrete strength is complex due to the high non-linearity involved in strength development, especially when using supplementary cementitious materials (SCMs) such as fly ash, silica fume, and GGBS. In this paper, an artificial neural network has been used to predict the compressive strength of concrete for four cases, namely concrete without cement replacement, and binary, ternary, and quaternary cement concretes corresponding to one, two and three different SCMs in the mix. To predict the strength accurately, a total of 1013 data were collected from 37 literature and trained using two training algorithms namely Levenberg-Marquardt (LM) and Bayesian Regularization (BR). The best predictions were achieved using one hidden layer with 14 and 15 neurons for LM and BR algorithms respectively. A high accuracy has been achieved with a correlation factor of 0.97 and 0.966 using the BR and LM algorithms respectively, with a20-index of 83%. Generally, the BR algorithm gives a better overall performance, while underestimating the compressive strength compared to LM. Sensitivity analysis has also been investigated using linear and quadratic regressions. The findings showed that the highest contributors to concrete strength were cement and water, while the lowest contributor was coarse aggregate.
引用
收藏
页码:817 / 835
页数:19
相关论文
共 50 条
  • [21] Environmentally Friendly Concrete Compressive Strength Prediction Using Hybrid Machine Learning
    Mansouri, Ehsan
    Manfredi, Maeve
    Hu, Jong-Wan
    SUSTAINABILITY, 2022, 14 (20)
  • [22] MACHINE LEARNING BASED PREDICTION OF COMPRESSIVE STRENGTH IN CONCRETE INCORPORATING SYNHTHETIC FIBERS
    Erdem, R. Tugrul
    Ciftcioglu, Aybike Ozyuksel
    Gucuyen, Engin
    Kantar, Erkan
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2024, 54 (02): : 131 - 139
  • [23] Prediction of the compressive strength of normal concrete using ensemble machine learning approach
    Sapkota S.C.
    Saha P.
    Das S.
    Meesaraganda L.V.P.
    Asian Journal of Civil Engineering, 2024, 25 (1) : 583 - 596
  • [24] Compressive Strength Prediction of Fly Ash Concrete Using Machine Learning Techniques
    Jiang, Yimin
    Li, Hangyu
    Zhou, Yisong
    BUILDINGS, 2022, 12 (05)
  • [25] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Khursheed, Suhaila
    Jagan, J.
    Samui, Pijush
    Kumar, Sanjay
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (03)
  • [26] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Suhaila Khursheed
    J. Jagan
    Pijush Samui
    Sanjay Kumar
    Innovative Infrastructure Solutions, 2021, 6
  • [27] Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
    Candelaria, Ma. Doreen Esplana
    Kee, Seong-Hoon
    Lee, Kang-Seok
    MATERIALS, 2022, 15 (05)
  • [28] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [29] Experimental study and machine learning based prediction of the compressive strength of geopolymer concrete
    Tran, Ngoc Thanh
    Nguyen, Duy Hung
    Tran, Quang Thanh
    Le, Huy Viet
    Nguyen, Duy-Liem
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (13) : 723 - 737
  • [30] Machine learning prediction of concrete compressive strength using rebound hammer test
    El -Mir, Abdulkader
    El-Zahab, Samer
    Sbartai, Zoubir Mehdi
    Homsi, Farah
    Saliba, Jacqueline
    El-Hassan, Hilal
    JOURNAL OF BUILDING ENGINEERING, 2023, 64