Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks

被引:9
|
作者
Hsueh, Fang-Che [1 ]
Chen, Damien [1 ]
Rajeshkumar, Thayalan [3 ]
Scopelliti, Rosario [2 ]
Maron, Laurent [3 ]
Mazzanti, Marinella [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, Grp Coordinat Chem, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Inst Sci & Ingenierie Chim, CH-1015 Lausanne, Switzerland
[3] Inst Natl Sci Appl, Lab Phys & Chim Nanoobjets, F-31077 Toulouse 4, France
基金
瑞士国家科学基金会;
关键词
Actinides; Redox Reactivity; Redox-Active Ligands; Thorium; Tripodal Ligands; ELECTRONIC-STRUCTURE; COMPLEXES SYNTHESIS; HYDRIDE CHEMISTRY; MULTIPLE BONDS; H2O REDUCTION; ARENE COMPLEX; URANIUM; OXO; METALLOCENE; ACTINIDE;
D O I
10.1002/anie.202317346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2Ar)3-arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(OtBu)2Ar)3-arene)(THF)2] (2OtBu) and [K(2.2.2-cryptand)][Th((OSiPh2Ar)3-arene)(THF)2](2Ph-crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2O, COT, CHT, Ph2N2, Ph3PS and O2) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged. Two electrons can be stored in the arene anchor of robust tripodal siloxide frameworks by chemical reduction of their Th(IV) complexes. The two electrons become available at the metal center for the controlled two-electron reduction of a broad range of substrates (N2O, COT, CHT, Ph2N2, Ph3PS and O2) while the ligand framework is retained in its original form.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] DFT study of redox-active metal-organic frameworks
    Jelic, Jelena
    Denysenko, Dmytro
    Volkmer, Dirk
    Reuter, Karsten
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [22] Redox-active metal–organic frameworks as electrode materials for batteries
    Zhongyue Zhang
    Kunio Awaga
    MRS Bulletin, 2016, 41 : 883 - 889
  • [23] Fluoride detection with redox-active metal-organic frameworks
    Wentz, Hanna
    Campbell, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Redox-active tetraaryldibenzoquinodimethanes
    Ishigaki, Yusuke
    Sugawara, Kazuma
    Tadokoro, Tomoki
    Hayashi, Yuki
    Harimoto, Takashi
    Suzuki, Takanori
    CHEMICAL COMMUNICATIONS, 2021, 57 (59) : 7201 - 7214
  • [25] Synthesis and Reactivity of Low-Coordinate Titanium Synthons Supported by a Reduced Redox-Active Ligand
    Clark, Kensha Marie
    INORGANIC CHEMISTRY, 2016, 55 (13) : 6443 - 6448
  • [26] Synchronized motion and electron transfer of a redox-active rotor
    Kume, Shoko
    Nishihara, Hiroshi
    DALTON TRANSACTIONS, 2011, 40 (10) : 2299 - 2305
  • [27] Reactivity of Redox-Active Guests Trapped Inside Molecular Capsules
    Qiu, Yanhua
    Kaifer, Angel E.
    ISRAEL JOURNAL OF CHEMISTRY, 2011, 51 (07) : 830 - 839
  • [28] Synthesis and reactivity of redox-active molecular group 13 complexes
    Sherbow, Tobias
    Berben, Louise
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Synthesis and reactivity of uranium complexes bearing redox-active ligands
    Anderson, Nickolas H.
    Schaefer, Brian A.
    Fanwick, Philip E.
    Bart, Suzanne C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [30] Reactivity of an aluminum hydride complex with a redox-active diimine ligand
    Sokolov, V. G.
    Koptseva, T. S.
    Dodonov, V. A.
    Rumyantsev, R. V.
    Fedushkin, I. L.
    RUSSIAN CHEMICAL BULLETIN, 2018, 67 (12) : 2164 - 2171