A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

被引:3
|
作者
Batiha, Iqbal M. [1 ,2 ]
Barrouk, Nabila [3 ]
Ouannas, Adel [4 ]
Farah, Abdulkarim [5 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Mohamed Cherif Messaadia Univ, Dept Math & Informat, Souk Ahras 41000, Algeria
[4] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[5] Isra Univ, Dept Math, Amman, Jordan
来源
关键词
Semigroups; local solution; global solution; reaction-diffusion systems; invariant regions; matrices of diffusion;
D O I
10.14317/jami.2023.893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 x 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.
引用
收藏
页码:893 / 906
页数:14
相关论文
共 50 条
  • [21] Weakly invariant regions for reaction-diffusion systems and applications
    Zheng, SN
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 1165 - 1180
  • [22] Existence and Uniqueness of Invariant Measures for Stochastic Reaction-Diffusion Equations in Unbounded Domains
    Misiats, Oleksandr
    Stanzhytskyi, Oleksandr
    Yip, Nung Kwan
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 996 - 1026
  • [23] EXISTENCE AND UNIQUENESS OF SOLUTION TO THE MARTINGALE PROBLEM FOR INFINITE DIMENSIONAL REACTION-DIFFUSION PARTICLE-SYSTEMS
    HAN, D
    CHINESE SCIENCE BULLETIN, 1990, 35 (06): : 518 - 519
  • [24] Global Existence for Reaction-Diffusion Systems on Multiple Domains
    Fitzgibbon, William E.
    Morgan, Jeff
    Ryan, John
    AXIOMS, 2022, 11 (07)
  • [25] Global existence for reaction-diffusion systems modelling ignition
    Herrero, MA
    Lacey, AA
    Velazquez, JJL
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 142 (03) : 219 - 251
  • [26] Global existence for degenerate quadratic reaction-diffusion systems
    Pierre, M.
    Texier-Picard, R.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1553 - 1568
  • [27] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    WANG ZhiCheng
    LI WanTong
    RUAN ShiGui
    Science China(Mathematics), 2016, 59 (10) : 1869 - 1908
  • [28] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    Wang, ZhiCheng
    Li, WanTong
    Ruan, ShiGui
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 1869 - 1908
  • [29] Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems
    ZhiCheng Wang
    WanTong Li
    ShiGui Ruan
    Science China Mathematics, 2016, 59 : 1869 - 1908
  • [30] On Global Existence of the Fractional Reaction-Diffusion System?s Solution
    Batiha, Iqbal M.
    Barrouk, Nabila
    Ouannas, Adel
    Alshanti, Waseem G.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21