A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

被引:3
|
作者
Batiha, Iqbal M. [1 ,2 ]
Barrouk, Nabila [3 ]
Ouannas, Adel [4 ]
Farah, Abdulkarim [5 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, Ajman, U Arab Emirates
[3] Mohamed Cherif Messaadia Univ, Dept Math & Informat, Souk Ahras 41000, Algeria
[4] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[5] Isra Univ, Dept Math, Amman, Jordan
来源
关键词
Semigroups; local solution; global solution; reaction-diffusion systems; invariant regions; matrices of diffusion;
D O I
10.14317/jami.2023.893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 x 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.
引用
收藏
页码:893 / 906
页数:14
相关论文
共 50 条