Impurity Knight shift in quantum dot Josephson junctions

被引:3
|
作者
Pavesic, Luka [1 ,2 ]
Pita-Vidal, Marta [3 ]
Bargerbos, Arno [3 ]
Zitko, Rok [1 ,2 ]
机构
[1] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[3] Delft Univ Technol, QuTech & Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
来源
SCIPOST PHYSICS | 2023年 / 15卷 / 02期
基金
荷兰研究理事会;
关键词
NUCLEAR-MAGNETIC-RESONANCE; NUMERICAL RENORMALIZATION-GROUP; SINGLE-ELECTRON SPIN; PERTURBATION EXPANSION; COHERENT MANIPULATION; ANDERSON MODEL; STATES; SUPERCONDUCTIVITY; EXCHANGE;
D O I
10.21468/SciPostPhys.15.2.070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spectroscopy of a Josephson junction device with an embedded quantum dot reveals the presence of a contribution to level splitting in external magnetic field that is proportional to cos 0, where 0 is the gauge-invariant phase difference across the junction. To elucidate the origin of this unanticipated effect, we systematically study the Zeeman splitting of spinful subgap states in the superconducting Anderson impurity model. The magnitude of the splitting is renormalized by the exchange interaction between the local moment and the continuum of Bogoliubov quasiparticles in a variant of the Knight shift phenomenon. The leading term in the shift is linear in the hybridisation strength I' (quadratic in electron hopping), while the subleading term is quadratic in I' (quartic in electron hopping) and depends on 0 due to spin-polarization-dependent corrections to the Josephson energy of the device. The amplitude of the 0-dependent part is largest for experimentally relevant parameters beyond the perturbative regime where it is investicoupling between the quantum dot spin and the Josephson current could find wide use in superconducting spintronics.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Optimization of Half-Flux-Quantum Circuits Composed of π-Shift and Conventional Josephson Junctions
    Tanemura, Shoma
    Takeshita, Yuto
    Li, Feng
    Nakayama, Toranosuke
    Tanaka, Masamitsu
    Fujimaki, Akira
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2023, 33 (05)
  • [22] Cooper pair splitting in parallel quantum dot Josephson junctions (vol 6, 7446, 2015)
    Deacon, R. S.
    Oiwa, A.
    Sailer, J.
    Baba, S.
    Kanai, Y.
    Shibata, K.
    Hirakawa, K.
    Tarucha, S.
    NATURE COMMUNICATIONS, 2015, 6
  • [23] Strong-coupling theory of quantum-dot Josephson junctions: Role of a residual quasiparticle
    Pavesic, Luka
    Aguado, Ramon
    Zitko, Rok
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [24] Quantum noise in long Josephson junctions
    Kurin, VV
    Pimenov, IV
    NOISE AND FLUCTUATIONS, 2005, 780 : 33 - 36
  • [25] NORMAL JOSEPHSON JUNCTIONS AND QUANTUM COHERENCE
    VANTHULL, LL
    MERCEREAU, JE
    PHYSICAL REVIEW LETTERS, 1966, 17 (12) : 629 - +
  • [26] Quantum computing with mesoscopic Josephson junctions
    Averin, D.V.
    Chaos, solitons and fractals, 1999, 10 (10): : 1679 - 1688
  • [27] QUANTUM NOISE IN JOSEPHSON-JUNCTIONS
    VANDERZIEL, A
    JOURNAL OF APPLIED PHYSICS, 1980, 51 (08) : 4329 - 4331
  • [28] Quantum computing with mesoscopic Josephson junctions
    Averin, DV
    CHAOS SOLITONS & FRACTALS, 1999, 10 (10) : 1679 - 1688
  • [29] Quantum matter Superfluid josephson junctions
    Charalambous, D
    NATURE PHYSICS, 2006, 2 (01) : 21 - 22
  • [30] Quantum manipulations of small Josephson junctions
    Shnirman, A
    Schon, G
    Hermon, Z
    PHYSICAL REVIEW LETTERS, 1997, 79 (12) : 2371 - 2374