DOUBLE EDGE-VERTEX DOMINATION IN GRAPHS: COMPLEXITY AND ALGORITHMS

被引:0
|
作者
Venkatakrishnan, Y. B. [1 ]
Senthilkumar, B. [1 ]
Kumar, H. Naresh [1 ]
机构
[1] SASTRA Deemed Be Univ, Sch Arts Sci Humanities & Educ, Dept Math, Thanjavur 613401, India
关键词
Double edge-vertex dominating set; NP-complete; Linear time algorithm; chain graphs; trees; NUMBER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vertex u of a graph G = (V, E) is edge-vertex dominated by an edge e is an element of E if u is incident with e, or u is adjacent to a vertex incident with e. A subset D subset of E is a double edge-vertex dominating set of G if every vertex of G is edge-vertex dominated by at least two edges of D. The double edge-vertex domination number gamma(dev)(G) of G is the minimum cardinality of a double edge-vertex dominating set of G. In this paper, we first show that the decision problem corresponding to the problem of computing gamma(dev)(G) is NP-complete for bipartite and perfect elimination bipartite graphs. Then we present a linear algorithm for computing the double edge-vertex domination number for chain graphs and trees. Finally, we propose a Delta(G) approximation algorithm for the problem of findding a minimum double edge-vertex dominating set of a graph G, where Delta(G) is the maximum degree of G. Moreover, we prove that this problem cannot be approximated within (1-epsilon) ln vertical bar V vertical bar for any epsilon > 0 unless NP subset of DTIME (vertical bar V vertical bar(O(log log) (vertical bar V vertical bar)).
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
  • [21] An improved upper bound of edge-vertex domination number of a tree
    Venkatakrishnan, Y. B.
    Krishnakurnari, B.
    INFORMATION PROCESSING LETTERS, 2018, 134 : 14 - 17
  • [22] Graphs with unique minimum edge-vertex dominating sets
    Senthilkumar, B.
    Chellali, M.
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 99 - 109
  • [23] Grid drawings of graphs with constant edge-vertex resolution
    Bekos, Michael A.
    Gronemann, Martin
    Montecchiani, Fabrizio
    Palvolgyi, Domotor
    Symvonis, Antonios
    Theocharous, Leonidas
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2021, 98
  • [24] On trees with total domination number equal to edge-vertex domination number plus one
    Krishnakumari, B.
    Venkatakrishnan, Y.B.
    Krzywkowski, Marcin
    Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 2016, 126 (02): : 153 - 157
  • [25] On trees with total domination number equal to edge-vertex domination number plus one
    B KRISHNAKUMARI
    Y B VENKATAKRISHNAN
    MARCIN KRZYWKOWSKI
    Proceedings - Mathematical Sciences, 2016, 126 : 153 - 157
  • [26] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    Aequationes mathematicae, 2016, 90 : 355 - 366
  • [27] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [28] Vertex-edge domination in graphs
    Paweł Żyliński
    Aequationes mathematicae, 2019, 93 : 735 - 742
  • [29] Vertex-edge domination in graphs
    Zylinski, Pawel
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [30] On trees with total domination number equal to edge-vertex domination number plus one
    Krishnakumari, B.
    Venkatakrishnan, Y. B.
    Krzywkowski, Marcin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02): : 153 - 157