BIVARIATE CONWAY-MAXWELL-POISSON PASCAL DISTRIBUTION WITH DATA ANALYSIS

被引:0
|
作者
Thilagarathinam, S. [1 ]
Saavithri, V. [1 ]
Seethalakshmi, R. [2 ]
机构
[1] Bharathidasan Univ, Nehru Mem Coll, Dept Math, Trichy, Tamil Nadu, India
[2] SASTRA Univ, Dept Math, Thanjavur, Tamil Nadu, India
关键词
Conway-Maxwell-Poisson; COM-Poisson Pascal; bivariate Conway-Maxwell-Poisson pascal;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this research paper, a new bivariate model is introduced by compounding negative binomial and Conway-Maxwell-Poisson distributions. It is called bivariate Conway-Maxwell-Poisson Pascal distribution (BCPP). This distribution is a generalization of bivariate Pascal distribution. Distributional properties are discussed. Expressions for the expectation, covariance and correlation-coefficient are obtained. Parameter estimators using the maximum likelihood are derived. Applications to entomological data is illustrated.
引用
收藏
页码:504 / 512
页数:9
相关论文
共 50 条
  • [31] Analyzing longitudinal clustered count data with zero inflation: Marginal modeling using the Conway-Maxwell-Poisson distribution
    Kang, Tong
    Levy, Steven M.
    Datta, Somnath
    BIOMETRICAL JOURNAL, 2021, 63 (04) : 761 - 786
  • [32] Modified jackknife ridge estimator for the Conway-Maxwell-Poisson model
    Algamal, Zakariya Yahya
    Abonazel, Mohamed R.
    Awwad, Fuad A.
    Eldin, Elsayed Tag
    SCIENTIFIC AFRICAN, 2023, 19
  • [33] Designing a cumulative sum control chart using generalised Conway-Maxwell-Poisson distribution for monitoring the count data
    Mustafa, Fakhar
    Sherwani, Rehan Ahmad Khan
    Raza, Muhammad Ali
    EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2024, 18 (05) : 637 - 668
  • [34] A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography
    Santarelli, Maria Filomena
    Della Latta, Daniele
    Scipioni, Michele
    Positano, Vincenzo
    Landini, Luigi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 77 : 90 - 101
  • [35] Marginal regression models for clustered count data based on zero-inflated Conway-Maxwell-Poisson distribution with applications
    Choo-Wosoba, Hyoyoung
    Levy, Steven M.
    Datta, Somnath
    BIOMETRICS, 2016, 72 (02) : 606 - 618
  • [36] Characterizing Existence and Location of the ML Estimate in the Conway-Maxwell-Poisson Model
    Bedbur, Stefan
    Imm, Anton
    Kamps, Udo
    MATHEMATICAL METHODS OF STATISTICS, 2024, 33 (01) : 70 - 78
  • [37] Examination of Crash Variances Estimated by Poisson-Gamma and Conway-Maxwell-Poisson Models
    Geedipally, Srinivas Reddy
    Lord, Dominique
    TRANSPORTATION RESEARCH RECORD, 2011, (2241) : 59 - 67
  • [38] Finite mixtures of mean-parameterized Conway-Maxwell-Poisson models
    Zhan, Dongying
    Young, Derek S.
    STATISTICAL PAPERS, 2024, 65 (03) : 1469 - 1492
  • [39] An Almost Unbiased Ridge Estimator for the Conway-Maxwell-Poisson Regression Model
    Sami, Faiza
    Amin, Muhammad
    Butt, Muhammad Moeen
    Yasin, Seyab
    IRANIAN JOURNAL OF SCIENCE, 2023, 47 (04) : 1209 - 1219
  • [40] Finite Mixtures of Mean-Parameterized Conway-Maxwell-Poisson Regressions
    Zhan, Dongying
    Young, Derek S.
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2024, 18 (01)