Ethylene Glycol Intercalation Engineered Interplanar Spacing and Redox Activity of Ammonium Vanadate Nanoflowers as a High-Performance Cathode for Aqueous Zinc-Ion Batteries

被引:15
|
作者
Chen, Ji [1 ]
Su, Liping [1 ]
Zhang, Xiaoqin [1 ]
Chen, Yuxiang [1 ]
Wang, Peng [1 ]
Zheng, Qiaoji [1 ]
Lin, Dunmin [1 ]
机构
[1] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610066, Peoples R China
关键词
Aqueous zinc-ion batteries; Cathode; NH4V4O10; Ethylene glycol; Intercalation; Nanoflower; NANOSHEETS; NH4V4O10; LAYER;
D O I
10.1021/acssuschemeng.3c03386
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ammonium vanadate (NH4V4O10) hasattracted considerable focus as a cathode material with great potentialfor aqueous zinc ion batteries due to its multielectron redox reactionof V and low cost; however, problems such as structural instabilityand slow reaction kinetics during cycling hinder its widespread application.Herein, ethylene glycol is intercalated into the interlayer of NH4V4O10 to develop high-performance cathodesfor aqueous zinc ion batteries. The layer spacing of the materialis expanded by & SIM;23% after the intercalation of ethylene glycol,providing a large interlaminar channel for Zn2+ diffusion,while the addition of ethylene glycol leads to the micromorphologyof nanoflowers self-assembled by ultrathin nanosheets, exposing moreactive sites for ion and electron transport. Moreover, the successfulpartial substitution of ethylene glycol for NH4 (+) in the NH4V4O10-based materialresults in an increase in the level of V5+ and alleviatesirreversible deamination, promoting efficient redox reactions. Inaddition, the introduction of ethylene glycol efficiently decreasesthe band gap of NH4V4O10 and, thus,improves the conductivity. As a result, the ethylene glycol-intercalatedNH(4)V(4)O(10) cathode provides a highreversible capacity of 516 mAh g(-1) at 0.5 A g(-1) and achieves an excellent cycling performance witha capacity retention rate of 91% after 1000 cycles at 10 A g(-1). This work provides a feasible strategy to develop high-performancelayered V-based cathodes for AZIBs by the coregulation of crystalstructure, micromorphology, and redox chemistry. Ethylene glycol intercalation expands interplanar spacingand promotes redox activity of NH4V4O10 as a high-performance cathode for aqueous zinc-ion batteries.
引用
收藏
页码:12467 / 12476
页数:10
相关论文
共 50 条
  • [21] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    Binghong She
    Lutong Shan
    Huijie Chen
    Jiang Zhou
    Xun Guo
    Guozhao Fang
    Xinxin Cao
    Shuquan Liang
    Journal of Energy Chemistry , 2019, (10) : 172 - 175
  • [22] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals, Metallurgy and Materials, 2021, 28 : 1684 - 1692
  • [23] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (10) : 1684 - 1692
  • [24] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Qin, Xing-hua
    Du, Ye-hong
    Zhang, Peng-chao
    Wang, Xin-yu
    Lu, Qiong-qiong
    Yang, Ai-kai
    Sun, Jun-cai
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2021, 28 (10) : 1684 - 1692
  • [25] Cations-Pillared and Polyaniline-Encapsulated Vanadate Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Ni, Mengmeng
    Qin, Mulan
    Chang, Hong
    Shi, Xueru
    Pei, Bingying
    Liang, Shuquan
    Cao, Xinxin
    CHEMSUSCHEM, 2024, 17 (19)
  • [26] A Multi-Colored, Structure-Tolerant Vanadate Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Qian
    Ju, Shidi
    Zhang, Shaohua
    Xu, Shilong
    Zhang, Zhipan
    ADVANCED ENERGY MATERIALS, 2025,
  • [27] Ammonium vanadate doped by transition bivalent metal ions for high-performance zinc-ion batteries
    Hu, Jidong
    Li, Yali
    Shen, Sijin
    Dong, Yunxia
    Li, Donghao
    Chen, Yongchao
    Fu, Yujun
    He, Deyan
    Li, Junshuai
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 968
  • [28] Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material
    Weijun Zhou
    Minfeng Chen
    Anran Wang
    Aixiang Huang
    Jizhang Chen
    Xinwu Xu
    Ching-Ping Wong
    Journal of Energy Chemistry , 2021, (01) : 377 - 384
  • [29] Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material
    Zhou, Weijun
    Chen, Minfeng
    Wang, Anran
    Huang, Aixiang
    Chen, Jizhang
    Xu, Xinwu
    Wong, Ching-Ping
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 377 - 384
  • [30] Intercalation Mechanism of the Ammonium Vanadate (NH4V4O10) 3D Decussate Superstructure as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Sun, Rui
    Qin, Zhaoxia
    Liu, Xinlong
    Wang, Caihong
    Lu, Shengjun
    Zhang, Yufei
    Fan, Haosen
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (35): : 11769 - 11777