Fabrication of liquid metal/diamond hybrid thermal interface materials with high thermal conductivity and low flowability

被引:4
|
作者
Wang, Wendong [1 ,2 ]
Wei, Song [3 ]
Du, Xinyu [4 ]
Ding, Zifeng [4 ]
Zhu, Qingsheng [1 ,2 ]
Qiao, Yanxin [4 ]
Wang, Xiaojing [4 ]
Guo, Jingdong [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[3] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guangxi Key Lab Mfg Syst & Adv Mfg Technol, Guilin 541004, Peoples R China
[4] Jiangsu Univ Sci & Technol, Coll Mat Sci & Engn, Zhenjiang 212001, Peoples R China
基金
中国国家自然科学基金;
关键词
MELTING TEMPERATURE ALLOYS; METAL;
D O I
10.1007/s10854-023-10827-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, liquid metal-based hybrid thermal interface materials were fabricated using chromium-coated diamond particles (CCDPs) and eutectic gallium-indium-tin low melting temperature alloy (EGa-In-Sn LMTA), and the changes in material thermal conductivity and viscosity with the volume mixing ratio of liquid metal and diamond were investigated. The thermal conductivity of TIMs shows a bell-shaped trend of first increasing and then decreasing with the increase of CCDP content, reaching the highest value of 126 & PLUSMN; 6 W/m & BULL;K at a 50% CCDP volume mixing ratio. When the CCDP content reaches the critical value (40%), the CCDPs formed a chain-like structure connected by LMTA, greatly enhancing heat transfer. The flowability of the LMTA/CCDP composite TIMs shows a decreasing trend with the increase of diamond content. The formation of liquid bridges and the presence of capillary forces cause the TIM to exhibit different flow characteristics from liquid to solid states.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Diamond composites of high thermal conductivity and low dielectric loss tangent
    Osipov, A. S.
    Klimczyk, P.
    Rutkowski, P.
    Melniychuk, Y. A.
    Romanko, L. O.
    Podsiadlo, M.
    Petrusha, I. A.
    Jaworska, L.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 269
  • [32] Simultaneous measurement of thermal conductivity and interface thermal conductance of diamond thin film
    Lee, Byeonghee
    Lee, Joon Sik
    Kim, Sun Ung
    Kim, Kyeongtae
    Kwon, Ohmyoung
    Lee, Seungkoo
    Kim, Jong Hoon
    Lim, Dae Soon
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06): : 2408 - 2412
  • [33] A novel liquid thermal polymerization resist for nanoimprint lithography with low shrinkage and high flowability
    Liao, Wen-chang
    Hsu, Steve Lien-Chung
    NANOTECHNOLOGY, 2007, 18 (06)
  • [34] Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity
    Yamamoto, Ryota
    Kowalski, Damian
    Zhu, Ruijie
    Wada, Keisuke
    Sato, Yuki
    Kitano, Sho
    Zhu, Chunyu
    Aoki, Yoshitaka
    Habazaki, Hiroki
    APPLIED SURFACE SCIENCE, 2021, 537
  • [35] Thermal Performance and Reliability of Liquid Metal Alloys as Thermal Interface Materials for Computing Electronics Devices
    Fan, Guangyu
    Wells, Jacob
    Beam, Micheal
    PROCEEDINGS OF THE IEEE 74TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, ECTC 2024, 2024, : 1705 - 1711
  • [36] Roadmap towards new generation liquid metal thermal interface materials
    ZHANG Xin
    DENG ZhongShan
    Science China(Technological Sciences), 2023, (06) : 1530 - 1550
  • [37] Study of the Mechanism of Liquid-Metal-Assisted Thermal Interface Materials
    Luo, Pingjun
    Tuersun, Yisimayili
    Huang, Xu
    Yang, Haoran
    Chu, Sheng
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (21)
  • [38] Roadmap towards new generation liquid metal thermal interface materials
    Zhang, Xin
    Deng, ZhongShan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (06) : 1530 - 1550
  • [39] Study of the Mechanism of Liquid-Metal-Assisted Thermal Interface Materials
    Luo, Pingjun
    Tuersun, Yisimayili
    Huang, Xu
    Yang, Haoran
    Chu, Sheng
    ADVANCED ENGINEERING MATERIALS, 2023,
  • [40] Roadmap towards new generation liquid metal thermal interface materials
    Xin Zhang
    ZhongShan Deng
    Science China Technological Sciences, 2023, 66 : 1530 - 1550