Machine learning-assisted discovery of Cr, Al-containing high-entropy alloys for high oxidation resistance

被引:15
|
作者
Dong, Ziqiang [1 ]
Sun, Ankang [1 ]
Yang, Shuang [1 ]
Yu, Xiaodong [1 ]
Yuan, Hao [1 ]
Wang, Zihan [1 ]
Deng, Luchen [1 ]
Song, Jinxia [2 ]
Wang, Dinggang [2 ]
Kang, Yongwang [2 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Beijing Inst Aeronaut Mat, Sci & Technol Adv High Temp Struct Mat Lab, Beijing 100095, Peoples R China
关键词
Machine learning; High-entropy alloys; High-temperature oxidation; MECHANICAL-PROPERTIES; BEHAVIOR; MICROSTRUCTURE; WEAR; X=0;
D O I
10.1016/j.corsci.2023.111222
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Machine Learning (ML) integrated workflow was utilized to guide the design of Cr, Al-containing five-element high-entropy alloys (HEAs) for achieving an enhanced high-temperature oxidation resistance. ML directs the design of HEAs to a chemical composition consisting of Fe, Cr, Al, Ni, and Cu for enhanced oxidation resistance. The oxidation behavior of AlxCrCuFeNi (x = 0, 0.25, 0.5, 1) HEAs at 1100 degrees C in air was systematically inves-tigated and the oxidation mechanism was elucidated. The experimental validation agrees well with the ML prediction, demonstrating that ML could be used as a powerful tool for designing alloys with optimized oxidation resistance.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Ab Initio to Activity: Machine Learning-Assisted Optimization of High-Entropy Alloy Catalytic Activity
    Christian M. Clausen
    Martin L. S. Nielsen
    Jack K. Pedersen
    Jan Rossmeisl
    High Entropy Alloys & Materials, 2023, 1 (1): : 120 - 133
  • [22] Structure prediction in high-entropy alloys with machine learning
    Zhao, D. Q.
    Pan, S. P.
    Zhang, Y.
    Liaw, P. K.
    Qiao, J. W.
    APPLIED PHYSICS LETTERS, 2021, 118 (23)
  • [23] Exploration for the physical origin and impact of chemical short-range order in high-entropy alloys: Machine learning-assisted study
    Shi, Panhua
    Xie, Zhen
    Si, Jiaxuan
    Yu, Jianqiao
    Wu, Xiaoyong
    Li, Yaojun
    Xu, Qiu
    Wang, Yuexia
    MATERIALS & DESIGN, 2025, 253
  • [24] Machine Learning-assisted Study of Low-, Medium-, and High-Entropy Hydrogen Storage Alloys Validated by the Experimental Data
    Somo, T. R.
    Lototskyy, M. V.
    Davids, M. W.
    Nyamsi, S. Nyallang
    Tarasov, B. P.
    Pasupathi, S.
    HIGH ENERGY CHEMISTRY, 2024, 58 (SUPPL4) : S528 - S542
  • [25] Machine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system
    Klimenko, Denis
    Stepanov, Nikita
    Ryltsev, Roman
    Yurchenko, Nikita
    Zherebtsov, Sergey
    INTERMETALLICS, 2024, 175
  • [26] A New Criterion for Prediction of Phase Stability in Al-Containing High Entropy Alloys
    Li, Fangjie
    Sha, Yeyu
    Zeng, Xin
    Zhang, Shidong
    Shi, Tao
    Shen, Bingyu
    Shen, Qin
    Liu, Min
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2021, 258 (03):
  • [27] Microstructure stability and oxidation behaviour of (FeCoNiMo)90(Al/Cr)10 high-entropy alloys
    Chen, C.
    Liu, N.
    Zhang, J.
    Cao, J.
    Wang, L. J.
    Xiang, H. F.
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (15) : 1883 - 1890
  • [28] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [29] Machine learning assisted optimization of tribological parameters of Al-Co-Cr-Fe-Ni high-entropy alloy
    Vashistha, Saurabh
    Mahanta, Bashista Kumar
    Singh, Vivek K.
    Singh, Shailesh Kumar
    MATERIALS AND MANUFACTURING PROCESSES, 2023, 38 (16) : 2093 - 2106
  • [30] Effect of Cr content on synergistic effect of Cr-Al during oxidation of high-entropy AlCoCrxNiTi alloys
    Chen, Tingting
    Shi, Yongjun
    Ren, Yong
    Li, Xianfa
    Liu, Zhitong
    Han, Tiantian
    CORROSION SCIENCE, 2024, 227