Thermal runaway propagation characteristics of lithium-ion batteries with a non-uniform state of charge distribution

被引:7
|
作者
Tian, Ying [1 ]
She, Yang [2 ]
Wu, Jiafeng [1 ]
Chai, Mu [1 ]
Huang, Liansheng [1 ]
机构
[1] Foshan Univ, Sch Mechatron Engn & Automation, Foshan 528200, Peoples R China
[2] China Elect Prod Reliabil & Environm Testing Res I, Guangzhou 510507, Peoples R China
关键词
Thermal runaway propagation; Non-uniform state of charge; Mitigation; MODEL; OVERDISCHARGE;
D O I
10.1007/s10008-023-05496-9
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Alleviating and restraining thermal runaway (TR) of lithium-ion batteries is a critical issue in developing new energy vehicles. The battery state of charge (SoC) influence on TR is significant. This paper performs comprehensive modeling and analysis with the non-uniform distribution of SoCs at the module level. First, a numerical model is established and validated with experimental data to calculate the TR of the cells with different SoCs. Then, the influence of uniform and non-uniform SoC distribution on TR propagation is studied. The results show that the battery temperature, TR propagation time, and range are significantly affected by the total SoC of the battery module. When the total SoC is reduced below 30%, the energy released by the battery is significantly reduced, which is not enough to trigger the TR of all battery cells, and the TR propagation can be interrupted. Furthermore, the analysis of TR propagation in a battery model with non-uniform SoC distribution indicates that the propagation can be mitigated by reducing the SoC of two adjacent batteries on the spreading path. When the total SoC of adjacent cells is less than 55%, the TR propagation will be successfully inhibited.
引用
收藏
页码:2185 / 2197
页数:13
相关论文
共 50 条
  • [41] A novel thermal runaway warning method of lithium-ion batteries
    Xiong, Rui
    Wang, Chenxu
    Sun, Fengchun
    iEnergy, 2023, 2 (03): : 165 - 171
  • [42] Modeling thermal runaway of lithium-ion batteries with a venting process
    He, C. X.
    Yue, Q. L.
    Chen, Q.
    Zhao, T. S.
    APPLIED ENERGY, 2022, 327
  • [43] Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles
    Song, Liubin
    Zheng, Youhang
    Xiao, Zhongliang
    Wang, Cheng
    Long, Tianyuan
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (01) : 30 - 46
  • [44] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [45] Modelling and simulation of thermal runaway phenomenon in lithium-ion batteries
    Alshammari, Ali
    Al-Obaidi, Mudhar
    Staggs, John
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (02)
  • [46] Microcalorimetry Analysis of Thermal Runaway Process in Lithium-ion Batteries
    Gu Xiaoyu
    Li Jin
    Sun Qian
    Wang Chaoyang
    ACTA CHIMICA SINICA, 2024, 82 (02) : 146 - 151
  • [47] Understanding Thermal Runaway Phenomena in Overcharged Lithium-Ion Batteries
    Lee, Minseo
    You, Ji-sun
    Kang, Kyeong-sin
    Lee, Jaesung
    Bong, Sungyool
    JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY, 2024, 27 (02): : 55 - 72
  • [48] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [49] Study on the influence of baffle plate on the thermal runaway propagation of lithium-ion batteries during storage
    Zhao, Luyao
    Li, Wei
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 253
  • [50] An experimental analysis on thermal runaway and its propagation in Cell-to-Pack lithium-ion batteries
    Wang, Huaibin
    Xu, Hui
    Zhao, Zhenyang
    Wang, Qinzheng
    Jin, Changyong
    Li, Yanliang
    Sheng, Jun
    Li, Kuijie
    Du, Zhiming
    Xu, Chengshan
    Feng, Xuning
    APPLIED THERMAL ENGINEERING, 2022, 211