Automatic Fixation of Decompilation Quirks Using Pre-trained Language Model

被引:0
|
作者
Kaichi, Ryunosuke [1 ]
Matsumoto, Shinsuke [1 ]
Kusumoto, Shinji [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
关键词
decompiler; fine-tuning; deep learning; quirk; grammatical error correction;
D O I
10.1007/978-3-031-49266-2_18
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Decompiler is a system for recovering the original code from bytecode. A critical challenge in decompilers is that the decompiled code contains differences from the original code. These differences not only reduce the readability of the source code but may also change the program's behavior. In this study, we propose a deep learning-based quirk fixation method that adopts grammatical error correction. One advantage of the proposed method is that it can be applied to any decompiler and programming language. Our experimental results show that the proposed method removes 55% of identifier quirks and 91% of structural quirks. In some cases, however, the proposed method injected a small amount of new quirks.
引用
收藏
页码:259 / 266
页数:8
相关论文
共 50 条
  • [31] Leveraging Pre-trained Language Model for Speech Sentiment Analysis
    Shon, Suwon
    Brusco, Pablo
    Pan, Jing
    Han, Kyu J.
    Watanabe, Shinji
    INTERSPEECH 2021, 2021, : 3420 - 3424
  • [32] Software Vulnerabilities Detection Based on a Pre-trained Language Model
    Xu, Wenlin
    Li, Tong
    Wang, Jinsong
    Duan, Haibo
    Tang, Yahui
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 904 - 911
  • [33] AraXLNet: pre-trained language model for sentiment analysis of Arabic
    Alduailej, Alhanouf
    Alothaim, Abdulrahman
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [34] A survey of text classification based on pre-trained language model
    Wu, Yujia
    Wan, Jun
    NEUROCOMPUTING, 2025, 616
  • [35] Integrating Pre-Trained Language Model With Physical Layer Communications
    Lee, Ju-Hyung
    Lee, Dong-Ho
    Lee, Joohan
    Pujara, Jay
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (11) : 17266 - 17278
  • [36] SsciBERT: a pre-trained language model for social science texts
    Shen, Si
    Liu, Jiangfeng
    Lin, Litao
    Huang, Ying
    Zhang, Lin
    Liu, Chang
    Feng, Yutong
    Wang, Dongbo
    SCIENTOMETRICS, 2023, 128 (02) : 1241 - 1263
  • [37] Interpretability of Entity Matching Based on Pre-trained Language Model
    Liang Z.
    Wang H.-Z.
    Dai J.-J.
    Shao X.-Y.
    Ding X.-O.
    Mu T.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (03): : 1087 - 1108
  • [38] TextPruner: A Model Pruning Toolkit for Pre-Trained Language Models
    Yang, Ziqing
    Cui, Yiming
    Chen, Zhigang
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, 2022, : 35 - 43
  • [39] Learning and Evaluating a Differentially Private Pre-trained Language Model
    Hoory, Shlomo
    Feder, Amir
    Tendler, Avichai
    Cohen, Alon
    Erell, Sofia
    Laish, Itay
    Nakhost, Hootan
    Stemmer, Uri
    Benjamini, Ayelet
    Hassidim, Avinatan
    Matias, Yossi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 1178 - 1189
  • [40] Idiom Cloze Algorithm Integrating with Pre-trained Language Model
    Ju S.-G.
    Huang F.-Y.
    Sun J.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (10): : 3793 - 3805