Low-light Image Enhancement via Breaking Down the Darkness

被引:75
|
作者
Guo, Xiaojie [1 ]
Hu, Qiming [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Image decomposition; Divide and rule; HISTOGRAM EQUALIZATION; NETWORK; RETINEX;
D O I
10.1007/s11263-022-01667-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images captured in low-light environments often suffer from complex degradation. Simply adjusting light would inevitably result in burst of hidden noise and color distortion. To seek results with satisfied lighting, cleanliness, and realism from degraded inputs, this paper presents a novel framework inspired by the divide-and-rule principle, greatly alleviating the degradation entanglement. Assuming that an image can be decomposed into texture (with possible noise) and color components, one can specifically execute noise removal and color correction along with light adjustment. For this purpose, we propose to convert an image from the RGB colorspace into a luminance-chrominance one. An adjustable noise suppression network is designed to eliminate noise in the brightened luminance, having the illumination map estimated to indicate noise amplification levels. The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors. Extensive experiments are conducted to reveal the effectiveness of our design, and demonstrate its superiority over state-of-the-art alternatives both quantitatively and qualitatively on several benchmark datasets. Our code has been made publicly available at https://github. com/m ngcv/Bread.
引用
收藏
页码:48 / 66
页数:19
相关论文
共 50 条
  • [31] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [32] Benchmarking Low-Light Image Enhancement and Beyond
    Jiaying Liu
    Dejia Xu
    Wenhan Yang
    Minhao Fan
    Haofeng Huang
    International Journal of Computer Vision, 2021, 129 : 1153 - 1184
  • [33] Low-light image enhancement with knowledge distillation
    Li, Ziwen
    Wang, Yuehuan
    Zhang, Jinpu
    NEUROCOMPUTING, 2023, 518 : 332 - 343
  • [34] Low-light Image Enhancement with Domain Adaptation
    Zhang, Yunjie
    Gao, Bin
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 55 - 60
  • [35] A survey on image enhancement for Low-light images
    Guo, Jiawei
    Ma, Jieming
    Garcia-Fernandez, Angel F.
    Zhang, Yungang
    Liang, Haining
    HELIYON, 2023, 9 (04)
  • [36] Low-Light Image Enhancement with Normalizing Flow
    Wang, Yufei
    Wan, Renjie
    Yang, Wenhan
    Li, Haoliang
    Chau, Lap-Pui
    Kot, Alex
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2604 - 2612
  • [37] Low-Light Image Enhancement via Implicit Priors Regularized Illumination Optimization
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2023, 9 : 944 - 953
  • [38] Low-light image enhancement via improved lightweight YUV attention network
    Abbass, Mohammed Y.
    Kasban, H.
    Elsharkawy, Zeinab F.
    COMPUTERS & GRAPHICS-UK, 2025, 127
  • [39] Low-Light Image Enhancement via Pair of Complementary Gamma Functions by Fusion
    Li, Changli
    Tang, Shiqiang
    Yan, Jingwen
    Zhou, Teng
    IEEE ACCESS, 2020, 8 (08): : 169887 - 169896
  • [40] Unsupervised Low-Light Image Enhancement via Feature Smoothing and Curve Regression
    Wang, Haoning
    Yang, Hongbo
    Zhang, Yang
    Yang, Minghao
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2475 - 2479