The geometric distribution of Selmer groups of elliptic curves over function fields

被引:2
|
作者
Feng, Tony [1 ]
Landesman, Aaron [2 ]
Rains, Eric M. [3 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Harvard Univ, Cambridge, MA 02138 USA
[3] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
AVERAGE SIZE; MONODROMY; RANKS;
D O I
10.1007/s00208-022-02429-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a positive integer n and a finite field F-q. We study the joint distribution of the rank rk(E), the n-Selmer group Sel(n)(E), and the n-torsion in the Tate-Shafarevich group III (E)[n] as E varies over elliptic curves of fixed height d >= 2 over F-q(t). We compute this joint distribution in the large q limit. We also show that the "large q, then large height" limit of this distribution agrees with the one predicted by Bhargava-Kane-Lenstra-Poonen-Rains.
引用
收藏
页码:615 / 687
页数:73
相关论文
共 50 条