A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries

被引:56
|
作者
Duan, Tong [1 ,2 ,3 ]
Cheng, Hongwei [1 ,2 ,3 ]
Liu, Yanbo [1 ,2 ,3 ]
Sun, Qiangchao [1 ,2 ,3 ]
Nie, Wei [1 ,2 ,3 ]
Lu, Xionggang [1 ,2 ,3 ]
Dong, Panpan [4 ]
Song, Min-Kyu [4 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[3] Shanghai Univ, PR China Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[4] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
Composite solid electrolyte; LLZTO filler; MEMO Janus layer; Interfacial compatibility; All -solid-state lithium metal batteries; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; CHEMISTRY; TRANSPORT; FILLERS;
D O I
10.1016/j.ensm.2023.103091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible composite solid electrolytes (CSEs) show great potential in high-energy all-solid-state lithium metal batteries owing to their easy fabrication, good electrochemical properties, and high safety. However, it remains challenging to achieve good interfacial compatibility between inorganic fillers and polymer, which affects lithium-ion transport and electrochemical performances of CSEs. Herein, we design a Li6.4La3Zr1.4Ta0.6O12 (LLZTO) filler coated with 3-methacryloxypropyltrimethoxysilane (MEMO) Janus layer for poly(ethylene) oxide (PEO) electrolyte (denoted as MEMO@LLZTO-PEO). We demonstrate the effect of MEMO coating on ionic transport of CSEs by the combined experimental and theoretical methods. The MEMO Janus layer facilitates uniform dispersion of filler in polymer as well as dissociates more lithium salt, which leads to much improved ionic conductivity of MEMO@LLZTO-PEO (2.16 x 10(-4) S cm(-1) at 30 degree celsius). Besides, MEMO@LLZTO could immobilize lithium salt anions via hydrogen bonding interactions and F-O chemical bonding, leading to good lithium-ion transference number (0.53) of MEMO@LLZTO-PEO. Moreover, we prepare a nonwoven fabric (NF)-supported CSE (denoted as MEMO@LLZTO-PEO-NF) to further improve the mechanical strength and safety of CSEs. The MEMO@LLZTO-PEO-NF shows great cyclability over 4000 h in a lithium symmetrical cell at a current density of 0.1 mA cm(-2) (areal capacity: 0.1 mAh cm(-2), 60 degree celsius). When used in all-solid-state Li/LiFePO4 batteries with a high active mass loading (>4 mg cm(-2)), MEMO@LLZTO-PEO-NF cell shows much-enhanced cyclability and rate capability at 60 degree celsius. This work also provides a new strategy to achieve good interfacial compatibility between inorganic fillers and polymer matrix in composite solid electrolytes for all-solid-state lithium batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte
    Deng, Chenglong
    Chen, Nan
    Hou, Chuanyu
    Liu, Hanxiao
    Zhou, Zhiming
    Chen, Renjie
    SMALL, 2021, 17 (18)
  • [32] AgF-PEO composite interfacial layer for electrolyte-free LAGP-based lithium metal batteries
    Chen, Guowei
    Zhang, Shengnan
    Zhang, Lin
    Liu, Tao
    Zhao, Guoqing
    Zhang, Xinyi
    Bai, Jinkun
    Lai, Kangrong
    Ci, Lijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [33] Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries
    Wang, Cheng
    Yang, Tianqi
    Zhang, Wenkui
    Huang, Hui
    Gan, Yongping
    Xia, Yang
    He, Xinping
    Zhang, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) : 3400 - 3408
  • [34] Asymmetric double-layer composite electrolyte with enhanced ionic conductivity and interface stability for all-solid-state lithium metal batteries
    Binglu Zhao
    Luxiang Ma
    Kai Wu
    Mengxiong Cao
    Minggui Xu
    Xinxiang Zhang
    Wen Liu
    Jitao Chen
    Chinese Chemical Letters, 2021, 32 (01) : 125 - 131
  • [35] Asymmetric double-layer composite electrolyte with enhanced ionic conductivity and interface stability for all-solid-state lithium metal batteries
    Zhao, Binglu
    Ma, Luxiang
    Wu, Kai
    Cao, Mengxiong
    Xu, Minggui
    Zhang, Xinxiang
    Liu, Wen
    Chen, Jitao
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 125 - 131
  • [36] A thin free-standing composite solid electrolyte film for solid-state lithium metal batteries
    Wang, Yongtao
    Wu, Lingqiao
    Guo, Xianwei
    Ding, Peipei
    Lin, Zhiyuan
    Wang, Yinzhong
    Yin, Xin
    Yu, Haijun
    CHEMICAL COMMUNICATIONS, 2022, 58 (55) : 7646 - 7649
  • [37] Ultrathin, Mechanically Robust Quasi-Solid Composite Electrolyte for Solid-State Lithium Metal Batteries
    Wang, Qingrong
    Xu, Hongli
    Liu, Zhongbo
    Chi, Shang-Sen
    Chang, Jian
    Wang, Jun
    Wang, Chaoyang
    Deng, Yonghong
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22482 - 22492
  • [38] Ultrathin, Mechanically Robust Quasi-Solid Composite Electrolyte for Solid-State Lithium Metal Batteries
    Wang Q.
    Xu H.
    Liu Z.
    Chi S.-S.
    Chang J.
    Wang J.
    Wang C.
    Deng Y.
    ACS Applied Materials and Interfaces, 2024, 16 (17): : 22482 - 22492
  • [39] Softening of PEO-LiTFSI/LLZTO Composite Polymer Electrolytes for Solid-State Batteries under Cyclic Compression
    Yoon, Dan-il
    Mulay, Nishad
    Baltazar, Jericko
    Cao, Dang Khoa
    Perez, Valeria
    Weker, Johanna Nelson
    Lee, Min Hwan
    Miller, Robert D.
    Oh, Dahyun
    Lee, Sang-Joon John
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9400 - 9408
  • [40] The Regulation of Solid Electrolyte Interphase on Composite Lithium Anodes in Solid-State Batteries
    Wang, Zi-You
    Zhao, Chen-Zi
    Yao, Nan
    Lu, Yang
    Xue, Zhou-Qing
    Huang, Xue-Yan
    Xu, Pan
    Huang, Wen-Ze
    Wang, Zi-Xuan
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (02)