Zygmund graphs are thin for doubling measures

被引:0
|
作者
Dimarco, Claudio A. [1 ]
机构
[1] Monroe Cty Community Coll, Math Dept, 1000 E Henrietta Rd, Rochester, NY 14623 USA
关键词
Zygmund class; Doubling measure; Lipschitz class; Holder; SETS;
D O I
10.1016/j.jmaa.2023.127954
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Zygmund functions form an intermediate class between Lipschitz and Holder functions; their second order divided differences are uniformly bounded. It is well known that for d >= 1 the graph of any Lipschitz function f : Rd -> R is thin for doubling measures, and we extend this result to the Zygmund class.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ON THIN CARPETS FOR DOUBLING MEASURES
    Chen, Changhao
    Wen, Shengyou
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (08) : 3439 - 3449
  • [2] Θ-type Calderon-Zygmund Operators with Non-doubling Measures
    Xie, Ru-long
    Shu, Li-sheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02): : 263 - 280
  • [3] Θ-type Calderón-Zygmund Operators with Non-doubling Measures
    Ru-long XIE
    Li-sheng SHU
    Acta Mathematicae Applicatae Sinica, 2013, (02) : 263 - 280
  • [4] MAXIMAL MULTILINEAR CALDERON-ZYGMUND OPERATORS WITH NON-DOUBLING MEASURES
    Lin, H.
    Meng, Y.
    ACTA MATHEMATICA HUNGARICA, 2009, 124 (03) : 263 - 287
  • [5] Θ-type Calderón-Zygmund operators with non-doubling measures
    Ru-long Xie
    Li-sheng Shu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 263 - 280
  • [6] Boundedness of Caldern-Zygmund operators with finite non-doubling measures
    Yang, Dachun
    Yang, Dongyong
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 961 - 971
  • [8] Multilinear Calderon-Zygmund operators on Morrey space with non-doubling measures
    Li, Liang
    Ma, Bolin
    Zhou, Jiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (02): : 283 - 296
  • [9] $BMO, H^1$, and Calderón-Zygmund operators for non doubling measures
    Xavier Tolsa
    Mathematische Annalen, 2001, 319 : 89 - 149
  • [10] Maximal multilinear Calderón-Zygmund operators with non-doubling measures
    H. Lin
    Y. Meng
    Acta Mathematica Hungarica, 2009, 124 : 263 - 287