Multilinear Calderon-Zygmund operators on Morrey space with non-doubling measures

被引:3
|
作者
Li, Liang [1 ]
Ma, Bolin [2 ]
Zhou, Jiang [3 ]
机构
[1] Yili Normal Univ, Inst Appl Math, Dept Math, Yining 835000, Peoples R China
[2] Jiaxing Univ, Coll Sci & Informat Engn, Jiaxing 314001, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2011年 / 78卷 / 02期
关键词
non doubling measure; multilinear Calderon-Zygmund operator; commutators; RBMO(mu); Morrey space; SINGULAR-INTEGRALS; NONHOMOGENEOUS SPACES; LEBESGUE SPACES; COMMUTATORS; INEQUALITIES; BOUNDEDNESS; THEOREM;
D O I
10.5486/PMD.2011.4556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under the assumption that mu is a non-negative Radon measure on R(d) which only satisfies some growth condition, the authors proved the multilinear Calderon-Zygmund operators are bounded from M(q1)(p1) (k, mu) x ... x M(qm)(pm) (k, mu) into M(q)(p) (k, mu) for some fixed q(1), ..., q(m) is an element of (1, infinity) and 1/q = 1/q(1) + ... + 1/q(m). Furthermore, the authors established the same bounded estimates for the commutators generated by multilinear Calderon-Zygmund operators and RBMO(mu) functions. Some of the results are also new even when the measure mu is the d-dimensional Lebesgue measure.
引用
收藏
页码:283 / 296
页数:14
相关论文
共 50 条