Many-body correlations in one-dimensional optical lattices with alkaline-earth(-like) atoms

被引:2
|
作者
Bilokon, Valeriia [1 ,2 ]
Bilokon, Elvira [1 ,2 ]
Banuls, Mari Carmen [3 ,4 ]
Cichy, Agnieszka [2 ,5 ]
Sotnikov, Andrii [1 ,6 ]
机构
[1] Kharkov Natl Univ, Svobody Sq 4, UA-61022 Kharkiv, Ukraine
[2] Adam Mickiewicz Univ, Uniwersytetu Poznanskiego 2, PL-61614 Poznan, Poland
[3] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[4] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[5] Johannes Gutenberg Univ Mainz, Inst Phys, Staudingerweg 9, D-55099 Mainz, Germany
[6] Kharkiv Inst Phys & Technol, Akad 1, UA-61108 Kharkiv, Ukraine
基金
新加坡国家研究基金会;
关键词
MATRIX PRODUCT STATES; RENORMALIZATION-GROUP; ULTRACOLD ATOMS; PHASES;
D O I
10.1038/s41598-023-37077-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We explore the rich nature of correlations in the ground state of ultracold atoms trapped in state-dependent optical lattices. In particular, we consider interacting fermionic ytterbium or strontium atoms, realizing a two-orbital Hubbard model with two spin components. We analyze the model in one-dimensional setting with the experimentally relevant hierarchy of tunneling and interaction amplitudes by means of exact diagonalization and matrix product states approaches, and study the correlation functions in density, spin, and orbital sectors as functions of variable densities of atoms in the ground and metastable excited states. We show that in certain ranges of densities these atomic systems demonstrate strong density-wave, ferro- and antiferromagnetic, as well as antiferroorbital correlations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] MANY-BODY SCATTERING PROCESSES IN A ONE-DIMENSIONAL BOSON SYSTEM
    THACKER, HB
    PHYSICAL REVIEW D, 1976, 14 (12): : 3508 - 3519
  • [22] BERRY PHASE IN A ONE-DIMENSIONAL QUANTUM MANY-BODY SYSTEM
    SCHUTZ, G
    PHYSICAL REVIEW E, 1994, 49 (03) : 2461 - 2464
  • [23] Many-body localization of a one-dimensional anyon Stark model
    You, Huimin
    Liu, Jinghu
    Zhang, Yunbo
    Xu, Zhihao
    ACTA PHYSICA SINICA, 2025, 74 (04)
  • [24] Solution of classical stochastic one-dimensional many-body systems
    Bares, PA
    Mobilia, M
    PHYSICAL REVIEW LETTERS, 1999, 83 (25) : 5214 - 5217
  • [25] MANY-BODY PROPERTIES OF A ONE-DIMENSIONAL BOSE-LIQUID
    UM, CI
    KAHNG, WH
    YIM, ES
    CHEONG, KT
    CHOH, ST
    ISIHARA, A
    PHYSICAL REVIEW B, 1984, 29 (11): : 6226 - 6232
  • [26] Theory of the Many-Body Localization Transition in One-Dimensional Systems
    Vosk, Ronen
    Huse, David A.
    Altman, Ehud
    PHYSICAL REVIEW X, 2015, 5 (03):
  • [27] Universal Tripartite Entanglement in One-Dimensional Many-Body Systems
    Zou, Yijian
    Siva, Karthik
    Soejima, Tomohiro
    Mong, Roger S. K.
    Zaletel, Michael P.
    PHYSICAL REVIEW LETTERS, 2021, 126 (12)
  • [28] Coupling Identical one-dimensional Many-Body Localized Systems
    Bordia, Pranjal
    Luschen, Henrik P.
    Hodgman, Sean S.
    Schreiber, Michael
    Bloch, Immanuel
    Schneider, Ulrich
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [29] Efficient simulation of one-dimensional quantum many-body systems
    Vidal, G
    PHYSICAL REVIEW LETTERS, 2004, 93 (04) : 040502 - 1
  • [30] Prethermalization in one-dimensional quantum many-body systems with confinement
    Birnkammer, Stefan
    Bastianello, Alvise
    Knap, Michael
    NATURE COMMUNICATIONS, 2022, 13 (01)