Low-frequency radio observations of recurrent nova RS Ophiuchi with MeerKAT and LOFAR

被引:4
|
作者
de Ruiter, Iris [1 ]
Nyamai, Miriam M. [2 ]
Rowlinson, Antonia [1 ,3 ]
Wijers, Ralph A. M. J. [1 ]
O'Brien, Tim J. [4 ]
Williams, David R. A. [4 ]
Woudt, Patrick [5 ]
机构
[1] Univ Amsterdam, Anton Pannekoek Inst Astron, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] South African Radio Observ SARAO, 2 Fir St,Black River Pk, ZA-7925 Cape Town, South Africa
[3] ASTRON Netherlands Inst Radio Astron, Postbus 2, NL-7990 AA Dwingeloo, Netherlands
[4] Univ Manchester, Jodrell Bank, Sch Phys & Astron, Ctr Astrophys, Manchester M13 9PL, England
[5] Univ Cape Town, Dept Astron, Private Bag X3, ZA-7701 Rondebosch, South Africa
基金
新加坡国家研究基金会; 英国科学技术设施理事会; 芬兰科学院; 荷兰研究理事会; 爱尔兰科学基金会;
关键词
binaries: symbiotic; stars: individual (RS Oph); novae; cataclysmic variables; stars:; winds; outflows; 2006; OUTBURST; RAY-EMISSION; X-RAYS; SPECTROSCOPY; SPECTRUM; ORBITS; MODEL; OPH; JET; SIMULATIONS;
D O I
10.1093/mnras/stad1418
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report low-frequency radio observations of the 2021 outburst of the recurrent nova RS Ophiuchi. These observations include the lowest frequency observations of this system to date. Detailed light curves are obtained by MeerKAT at 0.82 and 1.28 GHz and LOFAR at 54 and 154 MHz. These low-frequency detections allow us to put stringent constraints on the brightness temperature that clearly favour a non-thermal emission mechanism. The radio emission is interpreted and modelled as synchrotron emission from the shock interaction between the nova ejecta and the circumbinary medium. The light curve shows a plateauing behaviour after the first peak, which can be explained by either a non-uniform density of the circumbinary medium or a second emission component. Allowing for a second component in the light-curve modelling captures the steep decay at late times. Furthermore, extrapolating this model to 15 yr after the outburst shows that the radio emission might not fully disappear between outbursts. Further modelling of the light curves indicates a red giant mass-loss rate of similar to 5 x 10(-8) M(circle dot)yr(-1). The spectrum cannot be modelled in detail at this stage, as there are likely at least four emission components. Radio emission from stellar wind or synchrotron jets is ruled out as the possible origin of the radio emission. Finally, we suggest a strategy for future observations that would advance our understanding of the physical properties of RS Ophiuchi.
引用
收藏
页码:132 / 148
页数:17
相关论文
共 50 条
  • [31] A Low-Frequency Radio Spectropolarimeter for Observations of the Solar Corona
    P. Kishore
    R. Ramesh
    C. Kathiravan
    M. Rajalingam
    Solar Physics, 2015, 290 : 2409 - 2422
  • [32] LOW-FREQUENCY RADIO OBSERVATIONS OF POOR CLUSTERS OF GALAXIES
    HANISCH, RJ
    WHITE, RA
    ASTRONOMICAL JOURNAL, 1981, 86 (06): : 806 - 810
  • [33] NEW OBSERVATIONS OF THE LOW-FREQUENCY INTERPLANETARY RADIO EMISSIONS
    KURTH, WS
    GURNETT, DA
    GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (10) : 1801 - 1804
  • [34] Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR
    Pilia, M.
    Hessels, J. W. T.
    Stappers, B. W.
    Kondratiev, V. I.
    Kramer, M.
    van Leeuwen, J.
    Weltevrede, P.
    Lyne, A. G.
    Zagkouris, K.
    Hassall, T. E.
    Bilous, A. V.
    Breton, R. P.
    Falcke, H.
    Griessmeier, J. -M.
    Keane, E.
    Karastergiou, A.
    Kuniyoshi, M.
    Noutsos, A.
    Oslowski, S.
    Serylak, M.
    Sobey, C.
    ter Veen, S.
    Alexov, A.
    Anderson, J.
    Asgekar, A.
    Avruch, I. M.
    Bell, M. E.
    Bentum, M. J.
    Bernardi, G.
    Birzan, L.
    Bonafede, A.
    Breitling, F.
    Broderick, J. W.
    Brueggen, M.
    Ciardi, B.
    Corbel, S.
    de Geus, E.
    de Jong, A.
    Deller, A.
    Duscha, S.
    Eisloeffel, J.
    Fallows, R. A.
    Fender, R.
    Ferrari, C.
    Frieswijk, W.
    Garrett, M. A.
    Gunst, A. W.
    Hamaker, J. P.
    Heald, G.
    Horneffer, A.
    ASTRONOMY & ASTROPHYSICS, 2016, 586
  • [35] OBSERVATIONS OF LOW-FREQUENCY RADIO EMISSIONS IN THE EARTHS MAGNETOSPHERE
    FILBERT, PC
    KELLOGG, PJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A7): : 8867 - 8885
  • [36] LOW-FREQUENCY RADIO OBSERVATIONS OF STEPHANS QUINTET REGION
    KAFTANKASSIM, MA
    SULENTIC, JW
    ASTRONOMY & ASTROPHYSICS, 1974, 33 (03): : 343 - 349
  • [37] A Low-Frequency Radio Spectropolarimeter for Observations of the Solar Corona
    Kishore, P.
    Ramesh, R.
    Kathiravan, C.
    Rajalingam, M.
    SOLAR PHYSICS, 2015, 290 (09) : 2409 - 2422
  • [38] Low-frequency solar radiophysics with LOFAR and FASR
    Bastian, TS
    PLANETARY AND SPACE SCIENCE, 2004, 52 (15) : 1381 - 1389
  • [39] LOFAR, a new low frequency radio telescope
    Röttgering, H
    NEW ASTRONOMY REVIEWS, 2003, 47 (4-5) : 405 - 409
  • [40] Giant metrewave radio telescope observations of the 2006 outburst of the nova RS Ophiuchi:: First detection of emission at radio frequencies <1.4 GHz
    Kantharia, N. G.
    Anupama, G. C.
    Prabhu, T. P.
    Ramya, S.
    Bode, M. F.
    Eyres, S. P. S.
    O'Brien, T. J.
    ASTROPHYSICAL JOURNAL, 2007, 667 (02): : L171 - L174