The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation

被引:9
|
作者
Hamadneh, Tareq [1 ]
Hioual, Amel [2 ]
Alsayyed, Omar [3 ]
Al-Khassawneh, Yazan Alaya [4 ]
Al-Husban, Abdallah [5 ]
Ouannas, Adel [6 ]
机构
[1] Al Zaytoonah Univ Jordan, Fac Sci, Dept Math, Amman 11733, Jordan
[2] Univ Oum EL Bouaghi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
[4] Zarqa Univ, Data Sci & Artificial Intelligence Dept, Zarqa 13110, Jordan
[5] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[6] Univ Oum EL Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
关键词
fractional discrete reaction-diffusion equations; FitzHugh-Nagumo model; global asymptotic stability; Lyapunov functional; NOISE; CALCULUS;
D O I
10.3390/axioms12090806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to describe the dynamics of a discrete fractional-order reaction-diffusion FitzHugh-Nagumo model. We established acceptable requirements for the local asymptotic stability of the system's unique equilibrium. Moreover, we employed a Lyapunov functional to show that the constant equilibrium solution is globally asymptotically stable. Furthermore, numerical simulations are shown to clarify and exemplify the theoretical results.
引用
收藏
页数:20
相关论文
共 50 条