共 50 条
The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation
被引:9
|作者:
Hamadneh, Tareq
[1
]
Hioual, Amel
[2
]
Alsayyed, Omar
[3
]
Al-Khassawneh, Yazan Alaya
[4
]
Al-Husban, Abdallah
[5
]
Ouannas, Adel
[6
]
机构:
[1] Al Zaytoonah Univ Jordan, Fac Sci, Dept Math, Amman 11733, Jordan
[2] Univ Oum EL Bouaghi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
[4] Zarqa Univ, Data Sci & Artificial Intelligence Dept, Zarqa 13110, Jordan
[5] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[6] Univ Oum EL Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
来源:
关键词:
fractional discrete reaction-diffusion equations;
FitzHugh-Nagumo model;
global asymptotic stability;
Lyapunov functional;
NOISE;
CALCULUS;
D O I:
10.3390/axioms12090806
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The aim of this work is to describe the dynamics of a discrete fractional-order reaction-diffusion FitzHugh-Nagumo model. We established acceptable requirements for the local asymptotic stability of the system's unique equilibrium. Moreover, we employed a Lyapunov functional to show that the constant equilibrium solution is globally asymptotically stable. Furthermore, numerical simulations are shown to clarify and exemplify the theoretical results.
引用
收藏
页数:20
相关论文