The FitzHugh-Nagumo Model Described by Fractional Difference Equations: Stability and Numerical Simulation

被引:9
|
作者
Hamadneh, Tareq [1 ]
Hioual, Amel [2 ]
Alsayyed, Omar [3 ]
Al-Khassawneh, Yazan Alaya [4 ]
Al-Husban, Abdallah [5 ]
Ouannas, Adel [6 ]
机构
[1] Al Zaytoonah Univ Jordan, Fac Sci, Dept Math, Amman 11733, Jordan
[2] Univ Oum EL Bouaghi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Hashemite Univ, Fac Sci, Dept Math, POB 330127, Zarqa 13133, Jordan
[4] Zarqa Univ, Data Sci & Artificial Intelligence Dept, Zarqa 13110, Jordan
[5] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[6] Univ Oum EL Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
关键词
fractional discrete reaction-diffusion equations; FitzHugh-Nagumo model; global asymptotic stability; Lyapunov functional; NOISE; CALCULUS;
D O I
10.3390/axioms12090806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to describe the dynamics of a discrete fractional-order reaction-diffusion FitzHugh-Nagumo model. We established acceptable requirements for the local asymptotic stability of the system's unique equilibrium. Moreover, we employed a Lyapunov functional to show that the constant equilibrium solution is globally asymptotically stable. Furthermore, numerical simulations are shown to clarify and exemplify the theoretical results.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Numerical Simulation of the FitzHugh-Nagumo Equations
    Soliman, A. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [2] STRUCTURAL STABILITY FOR FITZHUGH-NAGUMO EQUATIONS
    Aliyeva, G. N.
    Kalantarov, V. K.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2011, 10 (02) : 289 - 293
  • [3] Numerical scheme and stability analysis of stochastic Fitzhugh-Nagumo model
    Yasin, Muhammad W.
    Iqbal, Muhammad S.
    Ahmed, Nauman
    Akgul, Ali
    Raza, Ali
    Rafiq, Muhammad
    Riaz, Muhammad Bilal
    RESULTS IN PHYSICS, 2022, 32
  • [4] Asymptotic analysis for time fractional FitzHugh-Nagumo equations
    Rahby, Ahmed S.
    Yang, Zhanwen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025,
  • [5] Synchronization for fractional FitzHugh-Nagumo equations with fractional Brownian motion
    Huang, Xiuqi
    Yang, Hongfu
    Wang, Xiangjun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 517 - 530
  • [6] An efficient numerical approach to solve the space fractional FitzHugh-Nagumo model
    Zhang, Jun
    Lin, Shimin
    Liu, Zixin
    Lin, Fubiao
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [8] Synchronization numerical simulation of two FitzHugh-Nagumo neurons
    Zhang, SH
    An, HL
    Zhan, Y
    Zhao, TJ
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (04) : 435 - 440
  • [9] An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations
    Chapwanya, M.
    Jejeniwa, O. A.
    Appadu, A. R.
    Lubuma, J. M. -S.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (10) : 1993 - 2009
  • [10] Time Fractional Fisher-KPP and Fitzhugh-Nagumo Equations
    Angstmann, Christopher N.
    Henry, Bruce I.
    ENTROPY, 2020, 22 (09)