Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals

被引:0
|
作者
Taddeo, Marcelo M. [1 ]
Morettin, Pedro A. [2 ]
机构
[1] Univ Fed Bahia, Salvador, BA, Brazil
[2] Univ Sao Paulo, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Scale mixture of normals; P-splines; Gibbs sampler; partially linear models;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is about semiparametric models assuming that the error follows a scale mixture of gaussian distributions and such that the functional relation between the response and explanatory variables is unknown. This class of distributions is particularly interesting since it includes heavy tailed distributions such as the Student's t, symmetric stable distributions and double exponential. They are specially useful for modelling data with high incidence of extreme values. Exploring the nature of these distributions and using the concept of P-splines we obtain the complete posterior conditional distributions of all the parameters involved in the model and apply the Gibbs sampler. In this way, we show how to combine P-splines and mixture of normals under a Bayesian perspective in order to estimate such curves. We conduct some simulations in order to illustrate the proposed methodology and also analyze the case of partially linear models.
引用
收藏
页码:1331 / 1355
页数:25
相关论文
共 50 条
  • [41] Boosting additive models using component-wise P-Splines
    Schmid, Matthias
    Hothorn, Torsten
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) : 298 - 311
  • [42] Variable Selection in Varying-Coefficient Models Using P-Splines
    Antoniadis, Anestis
    Gijbels, Irene
    Verhasselt, Anneleen
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (03) : 638 - 661
  • [43] Bayesian modeling of autoregressive partial linear models with scale mixture of normal errors
    Ferreira, Guillermo
    Castro, Luis M.
    Lachos, Victor H.
    Dias, Ronaldo
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (08) : 1796 - 1816
  • [44] Estimation of a Piecewise Exponential Model by Bayesian P-splines Techniques for Prognostic Assessment and Prediction
    Marano, Giuseppe
    Boracchi, Patrizia
    Biganzoli, Elia M.
    COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, CIBB 2014, 2015, 8623 : 183 - 198
  • [45] Bayesian spectral density estimation using P-splines with quantile-based knot placement
    Patricio Maturana-Russel
    Renate Meyer
    Computational Statistics, 2021, 36 : 2055 - 2077
  • [46] Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data
    Coffey, N.
    Hinde, J.
    Holian, E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 14 - 29
  • [47] An Extension to the Scale Mixture of Normals for Bayesian Small-Area Estimation
    Torres-Aviles, Francisco J.
    Icaza, Gloria
    Arellano-Valle, Reinaldo B.
    REVISTA COLOMBIANA DE ESTADISTICA, 2012, 35 (02): : 185 - 204
  • [48] Quantitative Analysis of Dynamic Contrast-Enhanced MR Images Based on Bayesian P-Splines
    Schmid, Volker J.
    Whitcher, Brandon
    Padhani, Anwar R.
    Yang, Guang-Zhong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (06) : 789 - 798
  • [49] Bayesian spectral density estimation using P-splines with quantile-based knot placement
    Maturana-Russel, Patricio
    Meyer, Renate
    COMPUTATIONAL STATISTICS, 2021, 36 (03) : 2055 - 2077
  • [50] Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns
    Goicoa, T.
    Adin, A.
    Etxeberria, J.
    Militino, A. F.
    Ugarte, M. D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (02) : 384 - 403