Allulose enhances epithelial barrier function by tight junction regulation via the TLR4/MyD88/NF-κB immune signaling pathway in an intestinal Caco-2 cell model

被引:3
|
作者
Baek, Jihye [1 ]
Kim, Jong-Hwa [1 ]
Nam, Yohan [1 ]
Kim, Go-Eun [2 ]
Ryu, Kyungheon [2 ]
Sa, Soonok [2 ]
Han, Jung-Sook [2 ]
Kim, Wonyong [1 ]
机构
[1] Chung Ang Univ, Coll Med, Dept Microbiol, 84 Heukseok Ro, Seoul 06974, South Korea
[2] Samyang Corp, Food R&D Ctr, Seongnam 13488, South Korea
基金
新加坡国家研究基金会;
关键词
D; -allulose; TLR4/MyD88/NF; kappa B signaling; Tight junction; Immune regulation; RARE SUGAR; RECEPTOR; 4; D-PSICOSE; DYSFUNCTION; PROMOTES;
D O I
10.1016/j.jff.2023.105721
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
D-allulose, a fructose isomer with almost zero calories, has been widely used as a food ingredient that is generally recognized as safe. In recent studies, D-allulose has been shown to alleviate some diseases via restoration of the intestinal barrier. To better understand the role of D-allulose in intestinal epithelial barrier function, we conducted experiments to demonstrate its effects. Our results demonstrated that D-allulose increased transepithelial electrical resistance and decreased intestinal barrier function-associated permeability toward 4 kDa FITC-dextran flux in the damaged intestinal epithelial barrier. It also repaired the disruption pattern of tight junction proteins (ZO-1, occludin, and claudin-1) and inhibited the inflammatory response by inhibiting the TLR4/MyD88/NF-kappa B pathway. Overall, these findings suggest that D-allulose has the potential to be a beneficial food supplement for improving intestinal epithelial barrier dysfunction.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Tanshinone IIA stabilizes vulnerable atherosclerotic plaque via TLR4/MyD88/NF-κB signaling pathway in apoE deficient mice
    Zhuo, Chen
    Xu, Hao
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 68 (16) : C1 - C1
  • [42] Role of TLR4/MyD88/NF-κB signaling in the contrast-induced injury of renal tubular epithelial cells
    Wang, Xin
    Zhou, Jiaojiao
    Yang, Jia
    Wang, Siwen
    Yang, Lichuan
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (05)
  • [43] Astragaloside IV protects diabetic cardiomyopathy against inflammation and apoptosis via regulating TLR4/MyD88/NF-κB signaling pathway
    Wang, Liang
    Shi, Hui
    Zhao, Chun-chun
    Jing-ya Li
    Jian-fei Peng
    An-lu Shen
    Zhou, Peng
    Hui-min Bian
    JOURNAL OF FUNCTIONAL FOODS, 2022, 88
  • [44] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Zhu, Kefu
    Wang, Xihao
    Weng, Yingzheng
    Mao, Genxiang
    Bao, Yizhong
    Lou, Jiangjie
    Wu, Shaoze
    Jin, Weihua
    Tang, Lijiang
    CARDIOVASCULAR DRUGS AND THERAPY, 2024, 38 (01) : 69 - 78
  • [45] In vivo and in vitro studies of Danzhi Jiangtang capsules against diabetic cardiomyopathy via TLR4/MyD88/NF-κB signaling pathway
    Shi, Hui
    Zhou, Peng
    Ni, Ying-qun
    Wang, Shu-shu
    Song, Rui
    Shen, An-lu
    Fang, Zhao-hui
    Wang, Liang
    SAUDI PHARMACEUTICAL JOURNAL, 2021, 29 (12) : 1432 - 1440
  • [46] Sulfated Galactofucan from Sargassum Thunbergii Attenuates Atherosclerosis by Suppressing Inflammation Via the TLR4/MyD88/NF-κB Signaling Pathway
    Kefu Zhu
    Xihao Wang
    Yingzheng Weng
    Genxiang Mao
    Yizhong Bao
    Jiangjie Lou
    Shaoze Wu
    Weihua Jin
    Lijiang Tang
    Cardiovascular Drugs and Therapy, 2024, 38 : 69 - 78
  • [47] RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis
    Chaoqin Duan
    Xi Xu
    Xiaoyi Lu
    Ling Wang
    Zhongkai Lu
    BMC Gastroenterology, 22
  • [48] RIP3 knockdown inhibits necroptosis of human intestinal epithelial cells via TLR4/MyD88/NF-κB signaling and ameliorates murine colitis
    Duan, Chaoqin
    Xu, Xi
    Lu, Xiaoyi
    Wang, Ling
    Lu, Zhongkai
    BMC GASTROENTEROLOGY, 2022, 22 (01)
  • [49] Bacillus coagulans alleviates intestinal barrier injury induced by Klebsiella pneumoniae in rabbits by regulating the TLR4/MyD88/NF-κB signalling pathway
    Wang, Jianing
    Zhang, Ziqiang
    Wang, Jiajia
    Shi, Lihui
    Wang, Shuaishuai
    Niu, Bingyu
    Tian, Xiaonuo
    Lv, Qiongxia
    Wei, Lan
    Li, Mengyun
    Liu, Yumei
    VETERINARY MICROBIOLOGY, 2025, 301
  • [50] Apigenin attenuates inflammatory response in allergic rhinitis mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway
    Li, Huajing
    Zhang, Hongmei
    Zhao, Hua
    ENVIRONMENTAL TOXICOLOGY, 2023, 38 (02) : 253 - 265