Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation

被引:11
|
作者
Chu, Jingyi [1 ]
Chen, Xin [1 ]
Liu, Yaqing [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Variable coefficient Korteweg-de Vries equation; Soliton solution; Bilinear ansatz method; Lax pair; BACKLUND TRANSFORMATION; KDV EQUATION; SOLITON; WAVE; MECHANICS;
D O I
10.1007/s11071-023-09062-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on the integrability and exact solutions of a (2+1)-dimensional variable coefficient Korteweg-de Vries equation. The bilinear form, Backlund transformations, and Lax pair of this equation are obtained using the Bell polynomial method. Soliton solutions, including lump solitons, breather solitons, and hybrid solutions, are constructed by assuming different auxiliary functions in the bilinear ansatz method. Additionally, the soliton solutions are presented as figures for different variable coefficient functions and undetermined items under appropriate parameter choices. The Backlund transformations also lead to Lax pair and the infinity conservation laws that ensure the integrability of the nonlinear system under study.
引用
收藏
页码:619 / 634
页数:16
相关论文
共 50 条
  • [21] Multiple solutions for the Schwarzian Korteweg-de Vries equation in (2+1) dimensions
    Ramirez, J.
    Romero, J. L.
    Bruzon, M. S.
    Gandarias, M. L.
    CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 682 - 693
  • [22] Lump-type solutions, interaction solutions and periodic wave solutions of a (3+1)-dimensional Korteweg-de Vries equation
    Tian, Hongfei
    Ha, Jinting
    Zhang, Huiqun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (27):
  • [23] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
    Yuan, Feng
    Ghanbari, Behzad
    CHINESE PHYSICS B, 2023, 32 (04)
  • [24] On some invariant solutions of (2+1)-dimensional Korteweg-de Vries equations
    Kumar, Mukesh
    Tanwar, Dig Vijay
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) : 2535 - 2548
  • [25] Multisoliton and general Wronskian solutions of a variable-coefficient Korteweg-de Vries equation
    Zhao, Hai-qiong
    Zhou, Tong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 19074 - 19082
  • [26] New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg-de Vries equation
    Li, Ye-Zhou
    Liu, Jian-Guo
    NONLINEAR DYNAMICS, 2018, 91 (01) : 497 - 504
  • [27] Soliton solutions for a variable-coefficient Korteweg-de Vries equation in fluids and plasmas
    Jiang, Yan
    Tian, Bo
    Liu, Wen-Jun
    Sun, Kun
    Qu, Qi-Xing
    PHYSICA SCRIPTA, 2010, 82 (05)
  • [28] THE GENERALIZED WRONSKIAN SOLUTIONS OF THE INTEGRABLE VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Zhang, Yi
    Zhao, Hai-Qiong
    Ye, Ling-Ya
    Lv, Yi-Neng
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (32): : 4615 - 4626
  • [29] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [30] Analytic investigation of the (2+1)-dimensional Schwarzian Korteweg-de Vries equation for traveling wave solutions
    Aslan, Ismail
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) : 6013 - 6017