Personalized Symmetrical and Asymmetrical Gait Generation of a Lower Limb Exoskeleton

被引:4
|
作者
Akkawutvanich, Chaicharn [1 ]
Manoonpong, Poramate [1 ,2 ]
机构
[1] Vidyasirimedhi Inst Sci & Technol, Sch Informat Sci & Technol, Bioinspired Robot & Neural Engn Lab, Rayong 21210, Thailand
[2] Univ Southern Denmark, Embodied AI & Neurorobot Lab, SDU Biorobot, DK-5230 Odense, Denmark
关键词
Adaptive online learning; asymmetrical gait; central pattern generator (CPG); gait rehabilitation; HUMAN-ROBOT INTERACTION; DESIGN; PRIMITIVES; MODELS; SYSTEM;
D O I
10.1109/TII.2023.3234619
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personal assistive devices for rehabilitation will be in increasing demand during the coming decades due to demographic change, i.e., an aging society. Among the elderly population, difficulty in walking is the most common problem. Even though there are commercially available lower limb exoskeleton systems, the coordination between user and device still needs to be improved to achieve versatile personalized gaits. To tackle this issue, an advanced EXOskeleton framework for Versatile personalized gaIt generation with a Seamless user-exo interface (called "EXOVIS") is proposed in this study. The main control of the framework uses adaptive bio-inspired modular neural mechanisms. These mechanisms include decoupled central pattern generators (CPGs) with Hebbian-based synaptic plasticity and adaptive CPG postprocessing networks with error-based learning. The control method facilitates the rapid online learning of personalized walking gaits described by the walking frequency as well as hip, knee, and ankle joint patterns. The method is verified on a real lower limb exoskeleton system with six degrees of freedom (DOFs) on different subjects under static and dynamic conditions, such as flat terrain and a split-belt treadmill. The results show that the proposed method can not only automatically learn to generate personalized symmetrical gaits, but also asymmetrical gaits, which have not been explicitly shown by other approaches so far.
引用
收藏
页码:9798 / 9808
页数:11
相关论文
共 50 条
  • [41] Learning a Predictive Model of Human Gait for the Control of a Lower-limb Exoskeleton
    Aertbelien, Erwin
    De Schutter, Joris
    2014 5TH IEEE RAS & EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2014, : 520 - 525
  • [42] Gait planning of lower limb exoskeleton on soft road based on centroid correction
    Cong M.
    Yang J.
    Zhang J.
    Liu D.
    1600, Huazhong University of Science and Technology (49): : 41 - 46
  • [43] Lower limb exoskeleton for gait rehabilitation with adaptive nonsingular sliding mode control
    Centeno-Barreda, Daniel
    Salazar-Cruz, Sergio
    Lopez-Gutierrez, Ricardo
    Rosales-Luengas, Yukio
    Lozano, Rogelio
    ROBOTICA, 2024, 42 (11) : 3819 - 3838
  • [44] A fast parameterized gait planning method for a lower-limb exoskeleton robot
    Ren, Hao
    Shang, Wanfeng
    Li, Niannian
    Wu, Xinyu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (01)
  • [45] Classification of Gait Phases from Lower Limb EMG: Application to Exoskeleton Orthosis
    Joshi, Chetas D.
    Lahiri, Uttama
    Thakor, Nitish V.
    2013 IEEE POINT-OF-CARE HEALTHCARE TECHNOLOGIES (PHT), 2013, : 228 - 231
  • [46] Gait Phase Classification of Lower Limb Exoskeleton Based on a Compound Network Model
    Xia, Yuxuan
    Li, Jiaqian
    Yang, Dong
    Wei, Wei
    SYMMETRY-BASEL, 2023, 15 (01):
  • [47] Gait Characteristics for a Lower Limb Exoskeleton Implementing the Precedence Walking Assistance Mechanism
    Cha, Dowan
    Kim, Kab Il
    Kim, Kyung-Soo
    Lee, Bum Joo
    Kim, Soohyun
    ADVANCED DEVELOPMENT IN INDUSTRY AND APPLIED MECHANICS, 2014, 627 : 241 - +
  • [48] Modeling and Simulation of a Lower Limb Exoskeleton with Computed Torque Control for Gait Rehabilitation
    Jaimes, W. J.
    Mantilla, J. F.
    Salinas, S. A.
    Navarro, H. J.
    2021 GLOBAL MEDICAL ENGINEERING PHYSICS EXCHANGES/PAN AMERICAN HEALTH CARE EXCHANGES (GMEPE/PAHCE), 2021,
  • [49] Convolutional neural network model for gait classification of flexible lower limb exoskeleton
    Sun, Lei
    Li, Chenghui
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1178 - 1182
  • [50] Multi-objective Gait Optimization of Lower-limb Exoskeleton Robot
    Ren, Hao
    Shang, Wanfeng
    Li, Niannian
    Wu, Xinyu
    2020 IEEE INTERNATIONAL CONFERENCE ON REAL-TIME COMPUTING AND ROBOTICS (IEEE-RCAR 2020), 2020, : 452 - 457