Positive radial solutions for the problem with Minkowski-curvature operator on an exterior domain

被引:0
|
作者
Zhao, Zhongzi [1 ]
Yan, Meng [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710071, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
基金
中国国家自然科学基金;
关键词
mean curvature operator; exterior domain; singular; positive radial solutions; sub and super solutions; MEAN-CURVATURE; SPACELIKE HYPERSURFACES; BIFURCATION;
D O I
10.3934/math.20231052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the problem with Minkowski-curvature operator on an exterior domain ⎨ ⎪ ⎪⎪⎪⎧ ⎪⎪⎪⎪⎩ ) -div( backward difference u & RADIC;1-| backward difference u|2 = & lambda;K(| x|) f(u) u & gamma;in Bc , partial differential u partial differential n| partial differential Bc = 0 , lim |x|& RARR;& INFIN;u(x) = 0 , (P) where 0 & LE; & gamma; < 1, Bc = {x & ISIN; RN : |x| > R} is a exterior domain in RN , N > 2, R > 0, K & ISIN; R & INFIN; C([R , & INFIN;) , (0 , & INFIN;)) is such that R rK(r)dr < & INFIN;, the function f : [0 , & INFIN;) & RARR; (0 , & INFIN;) is a continuous function such that lim s & RARR;& INFIN; positive radial solution for all & lambda; > 0. The proof of our main result is based upon the method of sub and super solutions. f (s) s & gamma;+1 = 0 and & lambda; > 0 is a parameter. We show that problem (P) has at least one
引用
收藏
页码:20654 / 20664
页数:11
相关论文
共 50 条