Design of Cu/MoOx for CO2 Reduction via Reverse Water Gas Shift Reaction

被引:3
|
作者
Gao, Yuan [1 ]
Xiong, Kun [1 ]
Zhu, Bingfeng [2 ]
机构
[1] Chongqing Technol & Business Univ, Engn Res Ctr Waste Oil Recovery Technol & Equipmen, Sch Environm & Resources, Minist Educ, Chongqing 400067, Peoples R China
[2] Pharmaceut Coll, Affiliated Hosp Chongqing Med 1, Chongqing 400060, Peoples R China
关键词
CO2; reduction; reverse water-gas shift; Cu-MoOx; interaction; catalytic performance; SOLID-SOLUTION; HYDROGENATION; CATALYSTS; METHANOL; PERFORMANCE; MECHANISM; VACANCIES; WELL;
D O I
10.3390/catal13040684
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 reduction to CO as raw material for conversion to chemicals and gasoline fuels via the reverse water-gas shift (RWGS) reaction is generally acknowledged to be a promising strategy that makes the CO2 utilization process more economical and efficient. Cu-based catalysts are low-cost and have high catalytic performance but have insufficient stability due to hardening at high temperatures. In this work, a series of Cu-based catalysts supported by MoOx were synthesized for noble metal-free RWGS reactions, and the effects of MoOx support on catalyst performance were investigated. The results show that the introduction of MoOx can effectively improve the catalytic performance of RWGS reactions. The obtained Cu/MoOx (1:1) catalyst displays excellent activity with 35.85% CO2 conversion and 99% selectivity for CO at 400 degrees C. A combination of XRD, XPS, and HRTEM characterization results demonstrate that MoOx support enhances the metal-oxide interactions with Cu through electronic modification and geometric coverage, thus obtaining highly dispersed copper and more Cu-MoOx interfaces as well as more corresponding oxygen vacancies.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Cu/MgO Reverse Water Gas Shift Catalyst with Unique CO2 Adsorption Behaviors
    Tsai, Ding-Huei
    Wu, Tung-Ta
    Lin, Hung-Chin
    Chueh, Lu-Yu
    Lin, Kun-Han
    Yu, Wen-Yueh
    Pan, Yung-Tin
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (06)
  • [22] Single-Atom Platinum Catalyst for Efficient CO2 Conversion via Reverse Water Gas Shift Reaction
    He, Yulian
    Huang, Dahong
    MOLECULES, 2023, 28 (18):
  • [23] Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction
    Rahimi, Ahmad Reza
    AleEbrahim, Habib
    Sohrabi, Morteza
    Nouri, Seyed Mohammad Mahdi
    KINETICS AND CATALYSIS, 2023, 64 (05) : 578 - 587
  • [24] Conversion of CO2 by reverse water gas shift (RWGS) reaction using a hydrogen oxyflame
    Shekari, Ali
    Labrecque, Raynald
    Larocque, Germain
    Vienneau, Michel
    Simoneau, Martin
    Schulz, Robert
    FUEL, 2023, 344
  • [25] Mathematical Modeling of CO2 Reforming of Methane with Reverse Water-Gas Shift Reaction
    Ahmad Reza Rahimi
    Habib AleEbrahim
    Morteza Sohrabi
    Seyed Mohammad Mahdi Nouri
    Kinetics and Catalysis, 2023, 64 : 578 - 587
  • [26] Developing Heterogeneous Catalysts for Reverse Water-Gas Shift Reaction in CO2 Valorization
    Kim, Gunjoo
    Lee, Hyunjoo
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [27] Theoretical Insight into Tuning CO2 Methanation and Reverse Water Gas Shift Reactions on MoOx-Modified Ni Catalysts
    Wei, Anlu
    Zhang, Ruoyu
    Qin, Yuyao
    Wang, Hua
    Zhu, Xinli
    Ge, Qingfeng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (42): : 18078 - 18089
  • [28] Sulfate residuals on Ru catalysts switch CO2 reduction from methanation to reverse water-gas shift reaction
    Chen, Min
    Liu, Longgang
    Chen, Xueyan
    Qin, Xiaoxiao
    Zhang, Jianghao
    Xie, Shaohua
    Liu, Fudong
    He, Hong
    Zhang, Changbin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] Effect of Cs and Ba promoters on Ni/graphite catalysts for CO2 conversion via the reverse water gas shift reaction
    Moral-Pombo, J.
    Conesa-Alonso, J. M.
    Campos-Castellanos, E.
    Garcia-Bordeje, E.
    Guerrero-Ruiz, A.
    Rodriguez-Ramos, I.
    CATALYSIS SCIENCE & TECHNOLOGY, 2025,
  • [30] Sorption-enhanced intensified CO2 hydrogenation via reverse water-gas shift reaction: Kinetics and modelling
    Desgagnes, Alex
    Iliuta, Ion
    Iliuta, Maria C.
    CHEMICAL ENGINEERING JOURNAL, 2024, 494