A small sample bearing fault diagnosis method based on ConvGRU relation network

被引:2
|
作者
Zhao, Zhihong [1 ,2 ]
Zhang, Ran [3 ]
机构
[1] Shijiazhuang Tiedao Univ, State Key Lab Mech Behav & Syst Safety Traff Engn, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Tiedao Univ, Sch Informat Sci & Technol, Shijiazhuang 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, Sch Traff & Transportat, Shijiazhuang 050043, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; relation network; small sample learning; ConvGRU;
D O I
10.1088/1361-6501/ad2d2d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Considering that in the fault diagnosis of bearing based on relation network, using the sample mean value as the class prototype for each class is susceptible to outliers, resulting in inaccurate class prototypes, this paper proposes a convolutional gate recurrent unit (ConvGRU) relation network fault diagnosis model; firstly, the model utilizes a embedding module to extract bearing fault features, and then uses the ConvGRU as a learnable class prototype generator to generate class prototypes for each class. Secondly, a relation module is utilized to measure the similarity between class prototypes and the sample features of the query set, obtaining relation scores, and ultimately achieving fault diagnosis. In order to test the validity and advantages of the model, experimental verification and analysis were conducted on the case western storage rolling bearing dataset. The results of the experiment show that the class prototypes generated by the ConvGRU class prototype generation module have better discrimination and accuracy compared to the class prototypes generated by the relation network. In the 10-way 5-shot experiment, the accuracy of the model proposed in this paper reaches 99.60%, which increases by 6.63%, 5.10%, 4.80%, and 1.75% compared to k-nearest neighbor, convolutional neural network, prototypical network, and relation network. The method proposed in this paper helps to generate more accurate class prototypes and has a certain effect on improving the accuracy of model fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Bearing Fault Diagnosis Method Based on Vibration Signal Extension and Time-Frequency Information Fusion Network Under Small Sample Conditions
    Ju, Zedong
    Chen, Yinsheng
    Chen, Jiahui
    Yang, Jingli
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 27712 - 27727
  • [22] A Fault Diagnosis Method Based on ANFIS and Bearing Fault Diagnosis
    Zhang, Junhong
    Ma, Wenpeng
    Ma, Liang
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 1273 - 1277
  • [23] Lightweight Bearing Fault Diagnosis Method Based on Improved Residual Network
    Gong, Lei
    Pang, Chongwen
    Wang, Guoqiang
    Shi, Nianfeng
    ELECTRONICS, 2024, 13 (18)
  • [24] Fault diagnosis method of rolling bearing based on deep belief network
    Shang, Zhiwu
    Liao, Xiangxiang
    Geng, Rui
    Gao, Maosheng
    Liu, Xia
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5139 - 5145
  • [25] Research on bearing fault diagnosis method based on transformer neural network
    Yang, Zhuohong
    Cen, Jian
    Liu, Xi
    Xiong, Jianbin
    Chen, Honghua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [26] A Fault Diagnosis Method of Rolling Bearing Based on Convolutional Neural Network
    Zhang, Bangcheng
    Gao, Shuo
    Hu, Guanyu
    Gao, Zhi
    Zhao, Yadong
    Du, Jianzhuang
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4709 - 4713
  • [27] Bearing Fault Diagnosis Method Based on STFT Image and AlexNet Network
    Wu Guoxin
    Ge, Wang
    Liu Xiuli
    Duan Ruilong
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 1056 - 1068
  • [28] A bearing fault diagnosis method based on adaptive residual shrinkage network
    Sun, Tieyang
    Gao, Jianxiong
    Meng, Lingchao
    Huang, Zhidi
    Yang, Shuai
    Li, Miaomiao
    MEASUREMENT, 2024, 238
  • [29] Bearing fault diagnosis method based on a CNN - BiGRU Siamese network
    Zhao Z.
    Wu D.
    Dou G.
    Yang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (06): : 166 - 171+211
  • [30] Fault diagnosis method of rolling bearing based on deep belief network
    Zhiwu Shang
    Xiangxiang Liao
    Rui Geng
    Maosheng Gao
    Xia Liu
    Journal of Mechanical Science and Technology, 2018, 32 : 5139 - 5145