(q, t)-deformed (skew) Hurwitz t-functions

被引:15
|
作者
Liu, Fan [1 ]
Mironov, A. [2 ,3 ,4 ]
Mishnyakov, V. [2 ,3 ,5 ]
Morozov, A. [3 ,4 ,5 ]
Popolitov, A. [3 ,5 ]
Wang, Rui [6 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Lebedev Phys Inst, Moscow 119991, Russia
[3] NRC Kurchatov Inst, Moscow 123182, Russia
[4] Inst Informat Transmiss Problems, Moscow 127994, Russia
[5] MIPT, Dolgoprudnyi 141701, Russia
[6] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX MODELS; W-INFINITY; ALGEBRA; OPERATORS; SYSTEMS;
D O I
10.1016/j.nuclphysb.2023.116283
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We follow the general recipe for constructing commutative families of W-operators, which provides Hurwitz-like expansions in symmetric functions (Macdonald polynomials), in order to obtain a difference operator example that gives rise to a (q, t)-deformation of the earlier studied models. As before, a key role is played by an appropriate deformation of the cut-and-join rotation operator. We outline its expression both in terms of generators of the quantum toroidal algebra and in terms of the Macdonald difference operators. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The q-deformed supersymmetric t-J model with a boundary
    Hou, BY
    Yang, WL
    Zhang, YZ
    Zhen, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (11): : 2593 - 2608
  • [42] Geometrically Deformed Charged Anisotropic Models in f(Q, T) Gravity
    Pradhan, Sneha
    Maurya, Sunil Kumar
    Sahoo, Pradyumn Kumar
    Mustafa, Ghulam
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024, 72 (9-10):
  • [43] A DETERMINANTAL FORMULA FOR SKEW Q-FUNCTIONS
    JOZEFIAK, T
    PRAGACZ, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1991, 43 : 76 - 90
  • [44] On correlation functions in J(T)over-bar-deformed CFTs
    Guica, Monica
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (18)
  • [45] A q-series identity and the arithmetic of Hurwitz zeta functions
    Coogan, GH
    Ono, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) : 719 - 724
  • [46] Moments of the skew t distribution
    Nadarajah, S
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2005, 7 (03) : 261 - 270
  • [47] Skew t mixture of experts
    Chamroukhi, F.
    NEUROCOMPUTING, 2017, 266 : 390 - 408
  • [48] On the improvement of q-deformed hyperbolic functions
    J. Morales
    J. J. Peña
    J. García-Ravelo
    Journal of Mathematical Chemistry, 2021, 59 : 303 - 314
  • [49] On mixtures of skew normal and skew t-distributions
    Lee, Sharon X.
    McLachlan, Geoffrey J.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2013, 7 (03) : 241 - 266
  • [50] On the improvement of q-deformed hyperbolic functions
    Morales, J.
    Pena, J. J.
    Garcia-Ravelo, J.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (02) : 303 - 314