(q, t)-deformed (skew) Hurwitz t-functions

被引:15
|
作者
Liu, Fan [1 ]
Mironov, A. [2 ,3 ,4 ]
Mishnyakov, V. [2 ,3 ,5 ]
Morozov, A. [3 ,4 ,5 ]
Popolitov, A. [3 ,5 ]
Wang, Rui [6 ]
Zhao, Wei-Zhong [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing, Peoples R China
[2] Lebedev Phys Inst, Moscow 119991, Russia
[3] NRC Kurchatov Inst, Moscow 123182, Russia
[4] Inst Informat Transmiss Problems, Moscow 127994, Russia
[5] MIPT, Dolgoprudnyi 141701, Russia
[6] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
MATRIX MODELS; W-INFINITY; ALGEBRA; OPERATORS; SYSTEMS;
D O I
10.1016/j.nuclphysb.2023.116283
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We follow the general recipe for constructing commutative families of W-operators, which provides Hurwitz-like expansions in symmetric functions (Macdonald polynomials), in order to obtain a difference operator example that gives rise to a (q, t)-deformation of the earlier studied models. As before, a key role is played by an appropriate deformation of the cut-and-join rotation operator. We outline its expression both in terms of generators of the quantum toroidal algebra and in terms of the Macdonald difference operators. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Narrow T-functions
    Daum, M
    FAST SOFTWARE ENCRYPTION, 2005, 3557 : 50 - 67
  • [2] Theory of t-functions
    Maier, W
    MATHEMATISCHE ANNALEN, 1931, 104 : 588 - 605
  • [3] Domains of t-functions
    Litvinov, NV
    MATHEMATICAL NOTES, 2003, 73 (3-4) : 536 - 538
  • [4] Domains of t-Functions
    N. V. Litvinov
    Mathematical Notes, 2003, 73 : 536 - 538
  • [5] On Algebraic Property of T-Functions
    Li, Ruilin
    Sun, Bing
    Li, Chao
    Fu, Shaojing
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (01) : 267 - 269
  • [6] Distinguishing attacks on T-functions
    Künzli, S
    Junod, P
    Meier, W
    PROGRESS IN CRYPTOLOGY - MYCRYPT 2005, 2005, 3715 : 2 - 15
  • [7] T-STRUCTURES, T-FUNCTIONS, AND TEXTS
    EHRENFEUCHT, A
    ROZENBERG, G
    THEORETICAL COMPUTER SCIENCE, 1993, 116 (02) : 227 - 290
  • [8] Cryptographic applications of T-functions
    Klimov, A
    Shamir, A
    SELECTED AREAS IN CRYPTOGRAPHY, 2004, 3006 : 248 - 261
  • [9] Linear properties in T-functions
    Molland, Havard
    Helleseth, Tor
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 5151 - 5157
  • [10] A new class of single cycle T-functions
    Hong, J
    Lee, DH
    Yeom, YJ
    Han, DW
    FAST SOFTWARE ENCRYPTION, 2005, 3557 : 68 - 82