Efficient Reliability-Based Path Planning of Off-Road Autonomous Ground Vehicles Through the Coupling of Surrogate Modeling and RRT

被引:11
|
作者
Yin, Jianhua [1 ]
Hu, Zhen [1 ]
Mourelatos, Zissimos P. [2 ]
Gorsich, David [3 ]
Singh, Amandeep [3 ]
Tau, Seth [3 ]
机构
[1] Univ Michigan Dearborn, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
[2] Oakland Univ, Mech Engn Dept, Rochester, MI 48309 USA
[3] US Army Combat Capabil Dev Command, Ground Vehicle Syst Ctr, Warren, MI 48397 USA
基金
美国国家科学基金会;
关键词
Index Terms- Reliability; path planning; uncertainty; off-road; autonomous ground vehicle; MOBILITY;
D O I
10.1109/TITS.2023.3296651
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Reliability-based global path planning incorporates reliability constraints into path planning to ensure that off-road autonomous ground vehicles can operate reliably in uncertain off-road environments. Current two-stage reliability-based path planning methods involve separate stages for surrogate modeling of mobility prediction and global path planning, resulting in a large number of unnecessary mobility simulations that makes the approaches computationally expensive. To tackle this challenge, this work proposes a novel efficient reliability-based global path planning approach, named ER-RRT*, which couples adaptive surrogate modeling with the rapidly-exploring random tree star (RRT*) algorithm. Firstly, a surrogate model for vehicle mobility prediction is used to guide the exploration of random trees subject to a mobility reliability constraint. Subsequently, the exploration trees and reliability assessment are employed to inform mobility simulations for the surrogate model refinement. These steps are implemented iteratively and thereby drastically reducing the required mobility simulations for path planning through the integration of adaptive surrogate modeling with global path planning. With a focus on the uncertainty in the slope map and soil properties of deformable terrain, we demonstrate ER-RRT* using a case study and compare it with the current two-stage approach. The results show that ER-RRT* is much more efficient than the current method in both computational time and the required number of mobility simulations for surrogate model construction. In addition, the path identified by ER-RRT* exhibits a comparable cost in distance to its counterpart obtained using the two-stage method.
引用
收藏
页码:15035 / 15050
页数:16
相关论文
共 50 条
  • [21] Real-time path planning for autonomous vehicle off-road driving
    Ramirez-Robles, Ethery
    Starostenko, Oleg
    Alarcon-Aquino, Vicente
    PeerJ Computer Science, 2024, 10
  • [22] A Hybrid Algorithm for Efficient Path Planning of Autonomous Ground Vehicles
    Anavatti, Sreenatha G.
    Biswas, Sumana
    Colvin, Jedd T.
    Pratama, Mahardhika
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [23] Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning
    Zhu, Zeyu
    Li, Nan
    Sun, Ruoyu
    Xu, Donghao
    Zhao, Huijing
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 971 - 977
  • [24] Off-road Terrain Path Planning for Differential Steering Vehicles Based on Artificial Potential Field Gradient
    Hu, Jiaming
    Hu, Yuhui
    Liu, Kai
    Wang, Wei
    Chen, Huiyan
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 4140 - 4145
  • [25] Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm
    Huang, Guanghao
    Ma, Qinglu
    International Journal of Intelligent Transportation Systems Research, 2022, 20 (01): : 170 - 180
  • [26] Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm
    Huang, Guanghao
    Ma, Qinglu
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (01) : 170 - 180
  • [27] Dynamic Path Planning for Traversing Autonomous Vehicle in Off-Road Environment Using MAVS
    Islam, Fahmida
    Ball, John E.
    Goodin, Chris
    AUTONOMOUS SYSTEMS: SENSORS, PROCESSING AND SECURITY FOR GROUND, AIR, SEA AND SPACE VEHICLES AND INFRASTRUCTURE 2022, 2022, 12115
  • [28] Research on Path Planning Algorithm of Autonomous Vehicles Based on Improved RRT Algorithm
    Guanghao Huang
    Qinglu Ma
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 170 - 180
  • [29] Energy efficient path planning for autonomous ground vehicles with ackermann steering?
    Zhang, Haojie
    Zhang, Yudong
    Liu, Chuankai
    Zhang, Zuoyu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2023, 162
  • [30] Off-road Path Planning Based on Improved Ant Colony Algorithm
    Han Wang
    Hongjun Zhang
    Kun Wang
    Chen Zhang
    Chengxiang Yin
    Xingdang Kang
    Wireless Personal Communications, 2018, 102 : 1705 - 1721