Hot carrier extraction from 2D semiconductor photoelectrodes

被引:13
|
作者
Austin, Rachelle [1 ]
Farah, Yusef R. [1 ]
Sayer, Thomas [2 ]
Luther, Bradley M. [1 ]
Montoya-Castillo, Andres [2 ]
Krummel, Amber T. [1 ]
Sambur, Justin B. [1 ,3 ]
机构
[1] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
[2] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[3] Colorado State Univ, Sch Adv Mat Discovery, Ft Collins, CO 80523 USA
关键词
2D materials; solar energy conversion; hot carrier; transient absorption spectroscopy; photoelectrochemistry; PHOTOINDUCED BANDGAP RENORMALIZATION; ELECTRON-TRANSFER; LAYER; ENERGY; DYNAMICS; CELLS; MOS2;
D O I
10.1073/pnas.2220333120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, "cool" carriers, but current strategies require expensive multi-junction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS2. Our approach facilitates ultrathin 7 A charge transport distances over 1 cm(2) areas by intimately coupling ML-MoS2 to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future two-dimensional (2D) semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuel applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [42] Challenges remain for 2D semiconductor growth
    Shi, Lu
    NATURE NANOTECHNOLOGY, 2024, 19 (02) : 145 - 145
  • [43] Advances in 2D semiconductor photonic crystals
    Weisbuch, C
    Benisty, H
    Rattier, M
    Smith, CJM
    Krauss, TF
    SYNTHETIC METALS, 2001, 116 (1-3) : 449 - 452
  • [44] Challenges remain for 2D semiconductor growth
    Lu Shi
    Nature Nanotechnology, 2024, 19 : 145 - 145
  • [46] Layer Engineering of 2D Semiconductor Junctions
    He, Yongmin
    Sobhani, Ali
    Lei, Sidong
    Zhang, Zhuhua
    Gong, Yongji
    Jin, Zehua
    Zhou, Wu
    Yang, Yingchao
    Zhang, Yuan
    Wang, Xifan
    Yakobson, Boris
    Vajtai, Robert
    Halas, Naomi J.
    Li, Bo
    Xie, Erqing
    Ajayan, Pulickel
    ADVANCED MATERIALS, 2016, 28 (25) : 5126 - 5132
  • [47] Controlling semiconductor electrons in 2D material
    Donaldson, Laurie
    MATERIALS TODAY, 2016, 19 (03) : 133 - 134
  • [48] 2D METASTABLE MAGNETIC SEMICONDUCTOR SUPERLATTICES
    GUNSHOR, RL
    KOLODZIEJSKI, LA
    OTSUKA, N
    GU, BP
    LEE, D
    HEFETZ, Y
    NURMIKKO, AV
    SUPERLATTICES AND MICROSTRUCTURES, 1987, 3 (01) : 5 - 8
  • [49] Asymmetric hot-carrier thermalization and broadband photoresponse in graphene-2D semiconductor lateral heterojunctions
    Lin, Yuxuan
    Ma, Qiong
    Shen, Pin-Chun
    Ilyas, Batyr
    Bie, Yaqing
    Liao, Albert
    Ergecen, Emre
    Han, Bingnan
    Mao, Nannan
    Zhang, Xu
    Ji, Xiang
    Zhang, Yuhao
    Yin, Jihao
    Huang, Shengxi
    Dresselhaus, Mildred
    Gedik, Nuh
    Jarillo-Herrero, Pablo
    Ling, Xi
    Kong, Jing
    Palacios, Tomas
    SCIENCE ADVANCES, 2019, 5 (06):
  • [50] Unveiling Ultrafast Carrier Extraction in Highly Efficient 2D/3D Bilayer Perovskite Solar Cells
    Singh, Mriganka
    Ho, I-Hung
    Singh, Anupriya
    Chan, Ching-Wen
    Yang, Jing-Wei
    Guo, Tzung-Fang
    Ahn, Hyeyoung
    Tung, Vincent
    Chu, Chih Wei
    Lu, Yu-Jung
    ACS PHOTONICS, 2022, 9 (11): : 3584 - 3591