Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning

被引:13
|
作者
Khan, Tariq M. [1 ]
Naqvi, Syed S. [2 ]
Robles-Kelly, Antonio [3 ,4 ]
Razzak, Imran [1 ]
机构
[1] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] COMSATS Univ Islamabad, Dept Elect & Comp Engn, Islamabad, Pakistan
[3] Deakin Univ, Fac Sci Engn & Built Environm, Sch Informat Technol, Locked Bag 20000, Geelong, Australia
[4] Def Sci & Technol Grp, Edinburgh, SA 5111, Australia
关键词
Retinal vessel segmentation; Encoder-decoder; Contextual network; Adversarial learning; Diabetic retinopathy; U-NET ARCHITECTURE; BLOOD-VESSELS; NEURAL-NETWORK; IMAGES; CONNECTIONS;
D O I
10.1016/j.neunet.2023.05.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual depen-dencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies. Another key idea is training in adversarial settings for foreground segmentation improvement through optimization of the region-based scores. This novel strategy boosts the performance of the segmentation network in terms of the Dice score (and correspondingly Jaccard index) while keeping the number of trainable parameters comparatively low. We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE, demonstrating its superior performance as compared with competitive approaches elsewhere in the literature.(C) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:310 / 320
页数:11
相关论文
共 50 条
  • [21] MULTI-RESOLUTION SEGMENTATION OF RETINAL VESSELS USING OPTIMAL THRESHOLDING METHOD
    Devi, M. C. Radhika
    Devi, S. Shenbaga
    ICMEE 2009: PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON MECHANICAL AND ELECTRONICS ENGINEERING, 2010, : 85 - 89
  • [22] CellSegNet: An Adaptive Multi-resolution Hybrid Network for Cell Segmentation
    Deng, Junwei
    Shen, Yiqing
    Guo, Yi
    Ke, Jing
    MEDICAL IMAGING 2022: DIGITAL AND COMPUTATIONAL PATHOLOGY, 2022, 12039
  • [23] Retinal vessel segmentation based on task-driven generative adversarial network
    Chen, Zhiyuan
    Jin, Wei
    Zeng, Xingbin
    Xu, Liang
    IET IMAGE PROCESSING, 2020, 14 (17) : 4599 - 4605
  • [24] Patch-Based Generative Adversarial Network Towards Retinal Vessel Segmentation
    Abbas, Waseem
    Shakeel, Muhammad Haroon
    Khurshid, Numan
    Taj, Murtaza
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV, 2019, 1142 : 49 - 56
  • [25] Conditional Patch-based Generative Adversarial Network for Retinal Vessel Segmentation
    Rammy, Sadaqat Ali
    Anwar, Sadia Jabbar
    Abrar, Muhammad
    Zhang, Wu
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 244 - 249
  • [26] Retinal blood vessel classification by using multi-resolution matched fibers and directional Recursive Region Growing Segmentation.
    Himaga, M
    Usher, D
    Boyce, JF
    Williamson, TH
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2001, 42 (04) : S702 - S702
  • [27] Automatic segmentation of retinal vessel via compact mixed network
    Luo, Ling
    Xue, Ding-Yu
    Feng, Xing-Long
    Kongzhi yu Juece/Control and Decision, 2022, 37 (02): : 353 - 360
  • [28] Multi-Level Attention Network for Retinal Vessel Segmentation
    Yuan, Yuchen
    Zhang, Lei
    Wang, Lituan
    Huang, Haiying
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 312 - 323
  • [29] A High-Resolution Network with Strip Attention for Retinal Vessel Segmentation
    Ye, Zhipin
    Liu, Yingqian
    Jing, Teng
    He, Zhaoming
    Zhou, Ling
    SENSORS, 2023, 23 (21)
  • [30] A Multi-Task Dense Network with Self-Supervised Learning for Retinal Vessel Segmentation
    Tu, Zhonghao
    Zhou, Qian
    Zou, Hua
    Zhang, Xuedong
    ELECTRONICS, 2022, 11 (21)