Automated Priority Assignment of Building Maintenance Tasks Using Natural Language Processing and Machine Learning

被引:3
|
作者
D'Orazio, Marco [1 ]
Bernardini, Gabriele [1 ]
Di Giuseppe, Elisa [1 ]
机构
[1] Univ Politecn Marche, Dept Construct Civil Engn & Architecture, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
Building maintenance; Facilities management and operation; Machine learning; NLP; Text mining; STAFF ASSIGNMENT; MANAGEMENT; CLASSIFICATION; MODEL;
D O I
10.1061/JAEIED.AEENG-1516
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Building maintenance tasks to solve unpredictable faults typically start with written communications from end-users (e.g., emails). Technicians manually translate end-users' requests in work-orders (WOs) assigning them a priority level and the needed staff typology. When the number of contemporary requests is too high, these actions can lead to the interruption of critical services and then possible safety issues. Machine Learning (ML) methods can be trained to automatize this process due to large databases of annotated requests. Nevertheless, natural language preprocessing is needed to apply ML methods because of the unstructured form of the requests. This work aims to verify how preprocessing impacts the ability of ML methods to properly assign priority to the requests. The research methodology combines four different text preprocessing approaches (e.g., symbols and numbers remotion, stop-words remotion, stemming, meaningful words selection) and five consolidated ML methods to classify WOs according to two different priority scales (binary, 4-classes). Accuracy, recall, precision, and F1 are calculated for each combination. Tests are performed on a database of about 12,000 end-users' maintenance requests, generated for 34 months in 23 university buildings. Results show that strong preprocessing methods, usually performed to increase the effectiveness of ML, do not significantly improve the accuracy of the predictions. Moreover, they show that four of the five tested ML methods obtained a higher accuracy for binary classification and for high and mean priority classes of 4-classes classification. This means that ML methods are especially effective in a preliminary check of the most urgent requests. These results then encourage the use of ML methods in automatic priority assignment of building maintenance tasks, even if based on natural language unstructured requests. The ML can significantly speed up the interventions assignment process for the technical staff, thus improving the maintenance process especially in large and complex buildings organizations.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Standardization of Featureless Variables for Machine Learning Models Using Natural Language Processing
    Modarresi, Kourosh
    Munir, Abdurrahman
    COMPUTATIONAL SCIENCE - ICCS 2018, PT II, 2018, 10861 : 234 - 246
  • [42] Recategorizing Interdisciplinary Articles Using Natural Language Processing and Machine/Deep Learning
    Tanaka, Kazuya
    Arakawa, Riku
    Kameoka, Yasuaki
    Sakai, Ichiro
    2018 PORTLAND INTERNATIONAL CONFERENCE ON MANAGEMENT OF ENGINEERING AND TECHNOLOGY (PICMET '18): MANAGING TECHNOLOGICAL ENTREPRENEURSHIP: THE ENGINE FOR ECONOMIC GROWTH, 2018,
  • [43] A Systematic Review of Using Machine Learning and Natural Language Processing in Smart Policing
    Sarzaeim, Paria
    Mahmoud, Qusay H.
    Azim, Akramul
    Bauer, Gary
    Bowles, Ian
    COMPUTERS, 2023, 12 (12)
  • [44] Insights into Search Engine Optimization using Natural Language Processing and Machine Learning
    Vinutha, M. S.
    Padma, M. C.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 86 - 96
  • [45] Using Natural Language Processing and Machine Learning to Detect Online Grooming Attacks
    Street, Jake
    Olajide, Funminiyi
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 261 - 270
  • [46] Searching for chromate replacements using natural language processing and machine learning algorithms
    Shujing Zhao
    Nick Birbilis
    npj Materials Degradation, 7
  • [47] Populating an allergens ontology using natural language processing and machine learning techniques
    Valarakos, AG
    Karkaletsis, V
    Alexopoulou, D
    Papadimitriou, E
    Spyropoulos, CD
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PROCEEDINGS, 2005, 3581 : 256 - 265
  • [48] Searching for chromate replacements using natural language processing and machine learning algorithms
    Zhao, Shujing
    Birbilis, Nick
    NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [49] Automate Traditional Interviewing Process Using Natural Language Processing and Machine Learning
    Senarathne, Pasindu
    Silva, Malaka
    Methmini, Ama
    Kavinda, Dulaj
    Thelijjagoda, Samantha
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [50] Detection of Fake News Using Machine Learning and Natural Language Processing Algorithms
    Prachi, Noshin Nirvana
    Habibullah, Md.
    Rafi, Md. Emanul Haque
    Alam, Evan
    Khan, Riasat
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (06) : 652 - 661