Optimization of Aluminum Alloy Formwork Geometry Parameters Based on a PSO-BP Neural Network

被引:2
|
作者
Chen, Yingjie [1 ]
Qian, Zhenxiao [1 ]
Kang, Chaofeng [1 ]
Wu, Yunfeng [1 ]
Dong, Qun [2 ]
Sun, Chao [2 ]
机构
[1] Xinjiang Agr Univ, Coll Hydraul & Civil Engn, Urumqi 830052, Peoples R China
[2] Xinjiang Changhedaye Construct Technol Co Ltd, Urumqi 830052, Peoples R China
关键词
aluminum alloy formwork; particle swarm optimization; BP neural network; optimization of geometric parameters; computational modeling; orthogonal experiment; finite element analysis; PLANNING-MODEL; CONCRETE; SIMULATION;
D O I
10.3390/buildings13051283
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
To assist in addressing the problem where an aluminum alloy formwork (AAF) deforms more greatly under the action of lateral pressure and therefore does not meet the requirements of plaster-free engineering, we propose a method for determining the geometric parameters of this formwork based on a PSO algorithm and BP neural network with ABAQUS as the platform. The influence of six geometric parameters of the formwork on the maximum deflection value of the panel under the action of lateral pressure is studied using finite element analysis. The maximum deflection value of the panel is used as the index, and the influence of each factor is analyzed with an orthogonal test, and a set of optimal geometric parameters is obtained via extreme difference analysis and analysis of variance. The sample data are obtained via finite element simulation, and the PSO-BP neural network model is established using the six factors of the orthogonal test as input values and the maximum deflection of the panel as the output value, and the optimal geometric parameters are optimized using the PSO algorithm. The results indicate that the maximum deflection for the panel in the orthogonal scheme is 1.446 mm. The PSO-BP neural network prediction model demonstrates greater accuracy and a 31.74% reduction in running time compared to the BP neural network prediction model. The optimized PSO-BP neural network prediction model scheme reveals a maximum panel deflection of 1.296 mm, a 10.37% decrease compared to the orthogonal solution. These findings offer technical guidance and a foundation for optimizing AAF designs, presenting practical applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Optimization of PSO-BP neural network for short-term wind power prediction
    Miao, Lu
    Fan, Wei
    Liu, Yu
    Qin, Yingjie
    Chen, Deyang
    Cui, Jiayan
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2024, 19 : 2687 - 2692
  • [22] A Fault Diagnosis Based On Combination Model Of VPRS And PSO-BP Neural Network
    XiaolingNiu
    Wang, Jun
    Ren, Zihui
    IAEDS15: INTERNATIONAL CONFERENCE IN APPLIED ENGINEERING AND MANAGEMENT, 2015, 46 : 319 - 324
  • [23] Pavement Roughness Detection Method Based on Smartphone and PSO-BP Neural Network
    Zhang, Jinxi
    Cao, Qianqian
    Ding, Yongjie
    13TH INTERNATIONAL CONFERENCE ON ROAD AND AIRFIELD PAVEMENT TECHNOLOGY 2023, 2023, : 883 - 893
  • [24] The BLDC Motor Model and the Control System Based on PSO-BP Neural Network
    Gao, Yinqiao
    Shu, Xiong
    2015 2nd International Conference on Education and Education Research (EER 2015), Pt 5, 2015, 9 : 281 - 286
  • [25] Mechanical Property Prediction of Strip Model Based on PSO-BP Neural Network
    Ping Wang
    Zhen-yi Huang
    Ming-ya Zhang
    Xue-wu Zhao
    Journal of Iron and Steel Research International, 2008, 15 : 87 - 91
  • [26] Prediction of aerodynamic pressure amplitude in tunnel based on PSO-BP neural network
    Cui F.
    Wang H.
    Shu Z.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (09): : 3752 - 3761
  • [27] Tool life prediction of dicing saw based on PSO-BP neural network
    Jun Shi
    Yanyan Zhang
    Yahui Sun
    Weifeng Cao
    Lintao Zhou
    The International Journal of Advanced Manufacturing Technology, 2022, 123 : 4399 - 4412
  • [28] Research on Logging Evaluation of Reservoir Contamination Based on PSO-BP Neural Network
    Li, Tao
    Guo, Libo
    Wang, Yuanmei
    Hu, Feng
    Xiao, Li
    Wang, Yanwu
    Cheng, Qi
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 2, PROCEEDINGS, 2009, 5552 : 839 - +
  • [29] Forecast of Chemical Export Trade Based on PSO-BP Neural Network Model
    Li, Na
    Li, Meng
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [30] Mechanical property prediction of strip model based on PSO-BP neural network
    Wang Ping
    Huang Zhen-yi
    Zhang Ming-ya
    Zhao Xue-wu
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2008, 15 (03) : 87 - 91