Non-epitaxial single-crystal 2D material growth by geometric confinement

被引:100
|
作者
Kim, Ki Seok [1 ,2 ]
Lee, Doyoon [1 ,2 ]
Chang, Celesta S. [1 ,2 ]
Seo, Seunghwan [1 ,3 ]
Hu, Yaoqiao [4 ]
Cha, Soonyoung [5 ,6 ]
Kim, Hyunseok [1 ,2 ]
Shin, Jiho [1 ,2 ]
Lee, Ju-Hee [3 ]
Lee, Sangho [1 ,2 ]
Kim, Justin S. [7 ]
Kim, Ki Hyun [8 ]
Suh, Jun Min [1 ,2 ]
Meng, Yuan [7 ]
Park, Bo-In [1 ,2 ]
Lee, Jung-Hoon [9 ]
Park, Hyung-Sang [9 ]
Kum, Hyun S. [10 ]
Jo, Moon-Ho [5 ]
Yeom, Geun Young [8 ,11 ,12 ]
Cho, Kyeongjae [4 ]
Park, Jin-Hong [3 ,12 ]
Bae, Sang-Hoon [7 ,13 ]
Kim, Jeehwan [1 ,2 ,14 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Sungkyunkwan Univ, Sch Elect & Elect Engn, Suwon, South Korea
[4] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75083 USA
[5] Inst Basic Sci IBS, Ctr Van Waals Quantum Solids, Pohang, South Korea
[6] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[7] Washington Univ, Dept Mech Engn & Mat Sci, St Louis, MO 63130 USA
[8] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon, South Korea
[9] ISAC Res, Daejeon, South Korea
[10] Yonsei Univ, Dept Elect & Elect Engn, Seoul, South Korea
[11] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang, South Korea
[12] Sungkyunkwan Univ, SKKU Adv Inst Nano Technol St, Suwon, South Korea
[13] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA
[14] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
新加坡国家研究基金会;
关键词
VALLEY; EXCITONS; GRAPHENE; FIELD; SPIN;
D O I
10.1038/s41586-022-05524-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics(1-3). Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.
引用
收藏
页码:88 / +
页数:19
相关论文
共 50 条
  • [21] Epitaxial growth of AlN on single-crystal Ni(111) substrates
    Kim, TW
    Matsuki, N
    Ohta, J
    Fujioka, H
    APPLIED PHYSICS LETTERS, 2006, 88 (12)
  • [22] Single-Crystal 2D Covalent Organic Frameworks for Plant Biotechnology
    Wang, Song
    Reddy, Vaishnavi Amarr
    Ang, Mervin Chun-Yi
    Cui, Jianqiao
    Khong, Duc Thinh
    Han, Yangyang
    Loh, Suh In
    Cheerlavancha, Raju
    Singh, Gajendra Pratap
    Rajani, Sarojam
    Strano, Michael S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (22) : 12155 - 12163
  • [23] Revisiting the Epitaxial Growth Mechanism of 2D TMDC Single Crystals
    Li, Chenyang
    Zheng, Fangyuan
    Min, Jiacheng
    Yang, Ni
    Chang, Yu-Ming
    Liu, Haomin
    Zhang, Yuxiang
    Yang, Pengfei
    Yu, Qinze
    Li, Yu
    Luo, Zhengtang
    Aljarb, Areej
    Shih, Kaimin
    Huang, Jing-Kai
    Li, Lain-Jong
    Wan, Yi
    ADVANCED MATERIALS, 2024,
  • [24] Growth of Wafer-Scale Single-Crystal 2D Semiconducting Transition Metal Dichalcogenide Monolayers
    Singh, Jitendra
    Astarini, Nadiya Ayu
    Tsai, Meng-Lin
    Venkatesan, Manikandan
    Kuo, Chi-Ching
    Yang, Chan-Shan
    Yen, Hung-Wei
    ADVANCED SCIENCE, 2024, 11 (11)
  • [25] EPITAXIAL-GROWTH OF CUINSE2 SINGLE-CRYSTAL BY HALOGEN TRANSPORT METHOD
    IGARASHI, O
    JOURNAL OF CRYSTAL GROWTH, 1993, 130 (3-4) : 343 - 356
  • [26] EPITAXIAL GROWTH OF SILICON USING DICHLOROSILANE: GROWTH ON SINGLE-CRYSTAL HEMISPHERES.
    Goldsmith, N.
    Robinson, R.H.
    1600, (34):
  • [27] EPITAXIAL-GROWTH OF SILICON USING DICHLOROSILANE - GROWTH ON SINGLE-CRYSTAL HEMISPHERES
    GOLDSMITH, N
    ROBINSON, PH
    RCA REVIEW, 1973, 34 (02): : 358 - 368
  • [28] A 2D Coordination Network That Detects Nitro Explosives in Water, Catalyzes Baylis-Hillman Reactions, and Undergoes Unusual 2D→3D Single-Crystal to Single-Crystal Transformation
    Sharma, Vivekanand
    De, Dinesh
    Pal, Sanchari
    Saha, Prithwidip
    Bharadwaj, Parimal K.
    INORGANIC CHEMISTRY, 2017, 56 (15) : 8847 - 8855
  • [29] Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates
    Ohtake, Mitsuru
    Tanaka, Takahiro
    Matsubara, Katsuki
    Kirino, Fumiyoshi
    Futamoto, Masaaki
    JOINT EUROPEAN MAGNETIC SYMPOSIA (JEMS), 2011, 303
  • [30] Epitaxial growth of single-crystal ultrathin films of bismuth on Si(111)
    Nagao, Tadaaki
    Doi, Takumi
    Sekiguchi, Takeharu
    Hasegawa, Shuji
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2000, 39 (7 B): : 4567 - 4570