Resolution and contrast enhancement in weighted subtraction microscopy by deep learning

被引:2
|
作者
Qiu, Yuxuan [1 ]
Chen, Wei [1 ]
Huang, Yuran [1 ]
Xu, Yueshu [1 ,2 ]
Sun, Yile [1 ]
Jiang, Tao [1 ]
Zhang, Zhimin [1 ,3 ]
Tang, Longhua [1 ]
Hao, Xiang [1 ]
Kuang, Cuifang [1 ,2 ,4 ,5 ]
Liu, Xu [1 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 315100, Peoples R China
[3] Zhejiang Lab, Res Ctr Intelligent Chips & Devices, Hangzhou 311121, Peoples R China
[4] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Super-resolution microscopy; Subtraction microscopy; Image reconstruction; Deep learning; EMISSION; ILLUMINATION; DIFFRACTION; LIMIT; FIELD;
D O I
10.1016/j.optlaseng.2023.107503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In subtraction microscopy, the negative sidelobes are inevitably generated by the difference between the en-velopes of Gaussian and doughnut point spread functions (PSFs), resulting in undesired information loss. There-fore, the trade-off between high resolution and information loss hinders further improvement in the performance of subtraction microscopy. Moreover, the postprocessing subtraction algorithms derived from PSF algebra tend to cause artifacts in dense samples. Herein, we propose an adaptive algorithm for assignment of the subtractive coefficient based on deep learning, termed Deep-IWS, to enhance the performance of subtraction microscopy. Both simulation and experiment reveal that Deep-IWS increases the resolution 1.8 times better than confocal microscopy, and significantly outperforms the previous subtraction microscopy. Furthermore, the reconstructed images also have fewer artifacts with a higher signal-to-noise ratio (SNR), demonstrating the validity and supe-riority of our method.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fiber bundle imaging resolution enhancement using deep learning
    Shao, Jianbo
    Zhang, Junchao
    Liang, Rongguang
    Barnard, Kobus
    OPTICS EXPRESS, 2019, 27 (11) : 15880 - 15890
  • [42] Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy
    Gasecka, Alicja
    Daradich, Amy
    Dehez, Harold
    Piche, Michel
    Cote, Daniel
    OPTICS LETTERS, 2013, 38 (21) : 4510 - 4513
  • [43] Resolution enhancement techniques in microscopy
    Cremer, Christoph
    Masters, Barry R.
    EUROPEAN PHYSICAL JOURNAL H, 2013, 38 (03): : 281 - 344
  • [44] Resolution enhancement techniques in microscopy
    Christoph Cremer
    Barry R. Masters
    The European Physical Journal H, 2013, 38 : 281 - 344
  • [45] Dynamic MR digital subtraction angiography with fast acquisition, contrast enhancement, and complex subtraction
    Wang, Y
    Johnston, DL
    Breen, JF
    Huston, J
    King, BF
    Ehman, RL
    RADIOLOGY, 1996, 201 : 1089 - 1089
  • [46] Correcting synthetic MRI contrast-weighted images using deep learning
    Kumar, Sidharth
    Saber, Hamidreza
    Charron, Odelin
    Freeman, Leorah
    Tamir, Jonathan I.
    MAGNETIC RESONANCE IMAGING, 2024, 106 : 43 - 54
  • [47] Resolution enhancement of wide-field interferometric microscopy by coupled deep autoencoders
    Isil, Cagatay
    Yorulmaz, Mustafa
    Solmaz, Berkan
    Turhan, Adil Burak
    Yurdakul, Celalettin
    Unlu, Selim
    Ozbay, Ekmel
    Koc, Aykut
    APPLIED OPTICS, 2018, 57 (10) : 2545 - 2552
  • [48] Resolution enhancement for deep tissue imaging with plasmonic saturated excitation (SAX) microscopy
    Deka, Gitanjal
    Ding, Hou-Xian
    Li, Kuan-Yu
    Chu, Shi-Wei
    Deka, Gitanjal
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS XIV, 2017, 10077
  • [49] Deep and Domain Transfer Learning Aided Photoacoustic Microscopy: Acoustic Resolution to Optical Resolution
    Zhang, Zhengyuan
    Jin, Haoran
    Zheng, Zesheng
    Sharma, Arunima
    Wang, Lipo
    Pramanik, Manojit
    Zheng, Yuanjin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3636 - 3648
  • [50] CONTRAST ENHANCEMENT AMPLIFIER FOR TELEVISION MICROSCOPY
    INTAGLIETTA, M
    TOMPKINS, WR
    INTERNATIONAL JOURNAL OF MICROCIRCULATION-CLINICAL AND EXPERIMENTAL, 1988, 7 (03): : 253 - 260