Resolution and contrast enhancement in weighted subtraction microscopy by deep learning

被引:2
|
作者
Qiu, Yuxuan [1 ]
Chen, Wei [1 ]
Huang, Yuran [1 ]
Xu, Yueshu [1 ,2 ]
Sun, Yile [1 ]
Jiang, Tao [1 ]
Zhang, Zhimin [1 ,3 ]
Tang, Longhua [1 ]
Hao, Xiang [1 ]
Kuang, Cuifang [1 ,2 ,4 ,5 ]
Liu, Xu [1 ,4 ,5 ]
机构
[1] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 315100, Peoples R China
[3] Zhejiang Lab, Res Ctr Intelligent Chips & Devices, Hangzhou 311121, Peoples R China
[4] Zhejiang Univ, Ningbo Res Inst, Ningbo 315100, Peoples R China
[5] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Super-resolution microscopy; Subtraction microscopy; Image reconstruction; Deep learning; EMISSION; ILLUMINATION; DIFFRACTION; LIMIT; FIELD;
D O I
10.1016/j.optlaseng.2023.107503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In subtraction microscopy, the negative sidelobes are inevitably generated by the difference between the en-velopes of Gaussian and doughnut point spread functions (PSFs), resulting in undesired information loss. There-fore, the trade-off between high resolution and information loss hinders further improvement in the performance of subtraction microscopy. Moreover, the postprocessing subtraction algorithms derived from PSF algebra tend to cause artifacts in dense samples. Herein, we propose an adaptive algorithm for assignment of the subtractive coefficient based on deep learning, termed Deep-IWS, to enhance the performance of subtraction microscopy. Both simulation and experiment reveal that Deep-IWS increases the resolution 1.8 times better than confocal microscopy, and significantly outperforms the previous subtraction microscopy. Furthermore, the reconstructed images also have fewer artifacts with a higher signal-to-noise ratio (SNR), demonstrating the validity and supe-riority of our method.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement
    Kseniya Korobchevskaya
    Chiara Peres
    Zhibin Li
    Alexei Antipov
    Colin J. R. Sheppard
    Alberto Diaspro
    Paolo Bianchini
    Scientific Reports, 6
  • [2] Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement
    Korobchevskaya, Kseniya
    Peres, Chiara
    Li, Zhibin
    Antipov, Alexei
    Sheppard, Colin J. R.
    Diaspro, Alberto
    Bianchini, Paolo
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Resolution and contrast enhancement in optical subtraction microscopy with annular aperture
    Zheng-ya Li
    Xiang-hui Wang
    Fei Fan
    Jie-rong Cheng
    Sheng-jiang Chang
    Optoelectronics Letters, 2019, 15 : 93 - 97
  • [4] Resolution and contrast enhancement in optical subtraction microscopy with annular aperture
    Li Zheng-ya
    Wang Xiang-hui
    Fan Fei
    Cheng Jie-rong
    Chang Sheng-jiang
    OPTOELECTRONICS LETTERS, 2019, 15 (02) : 93 - 97
  • [5] Resolution and contrast enhancement in optical subtraction microscopy with annular aperture
    李正亚
    王湘晖
    范飞
    程洁嵘
    常胜江
    OptoelectronicsLetters, 2019, 15 (02) : 93 - 97
  • [6] Resolution Enhancement in Scanning Electron Microscopy using Deep Learning
    de Haan, Kevin
    Ballard, Zachary S.
    Rivenson, Yair
    Wu, Yichen
    Ozcan, Aydogan
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [7] Resolution enhancement in scanning electron microscopy using deep learning
    de Haan, Kevin
    Ballard, Zachary S.
    Rivenson, Yair
    Wu, Yichen
    Ozcan, Aydogan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Resolution enhancement in scanning electron microscopy using deep learning
    Kevin de Haan
    Zachary S. Ballard
    Yair Rivenson
    Yichen Wu
    Aydogan Ozcan
    Scientific Reports, 9
  • [9] Resolution-Enhancement for an Integral Imaging Microscopy Using Deep Learning
    Kwon, Ki-Chul
    Kwon, Ki Hoon
    Erdenebat, Munkh-Uchral
    Piao, Yan-Ling
    Lim, Young-Tae
    Kim, Min Young
    Kim, Nam
    IEEE PHOTONICS JOURNAL, 2019, 11 (01):
  • [10] Photoacoustic Microscopy Imaging from Acoustic Resolution to Optical Resolution Enhancement with Deep Learning
    Zhang, Zhengyuan
    Jin, Haoran
    Zheng, Zesheng
    Luo, Yunqi
    Zheng, Yuanjin
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,