Curvatures on Homogeneous Generalized Matsumoto Space

被引:2
|
作者
Gupta, M. K. [1 ]
Sharma, Suman [1 ]
Mofarreh, Fatemah [2 ]
Chaubey, Sudhakar Kumar [3 ]
机构
[1] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
[2] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh 11546, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
关键词
Minkowski space; Finsler space; homogeneous space; isometry group; Lie group; Matsumoto change; FINSLER-SPACE; HYPERSURFACE; ISOMETRIES;
D O I
10.3390/math11061316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The curvature characteristics of particular classes of Finsler spaces, such as homogeneous Finsler spaces, are one of the major issues in Finsler geometry. In this paper, we have obtained the expression for S-curvature in homogeneous Finsler space with a generalized Matsumoto metric and demonstrated that the homogeneous generalized Matsumoto space with isotropic S-curvature has to vanish the S-curvature. We have also derived the expression for the mean Berwald curvature by using the formula of S-curvature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] ON SECTIONAL CURVATURES AND CHARACTERISTIC OF HOMOGENEOUS SPACES
    GREUB, W
    TONDEUR, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (02) : 444 - +
  • [22] Flag curvatures of homogeneous Finsler spaces
    Huang L.
    European Journal of Mathematics, 2017, 3 (4) : 1000 - 1029
  • [23] ON THE EQUIVALENCE OF GENERALIZED RICCI CURVATURES
    Cavalcanti, Gil r.
    Pedregal, Jaime
    Rubio, Roberto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [24] Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms
    Choudhary, Majid Ali
    Blaga, Adara M.
    JOURNAL OF GEOMETRY, 2020, 111 (03)
  • [25] On Riemannian and Ricci curvatures of homogeneous Finsler manifolds
    Tayebi, A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025, 68 (01): : 73 - 90
  • [26] Prescribed scalar curvatures for homogeneous toric bundles
    Chen, Bohui
    Han, Qing
    Li, An-Min
    Lian, Zhao
    Sheng, Li
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 63 : 186 - 211
  • [27] HOLOMORPHIC SECTIONAL CURVATURES OF HOMOGENEOUS BOUNDED DOMAINS
    WU, LF
    XU, YC
    KEXUE TONGBAO, 1983, 28 (05): : 592 - 596
  • [28] Finsler space with the general approximate Matsumoto metric
    Park, HS
    Lee, IY
    Park, CK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (01): : 59 - 77
  • [29] Curvatures of homogeneous sub-Riemannian manifolds
    Berestovskii V.N.
    European Journal of Mathematics, 2017, 3 (4) : 788 - 807
  • [30] Killing fields and curvatures of homogeneous Finsler manifolds
    Hu, Zhiguang
    Deng, Shaoqiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 215 - 229