Curvatures on Homogeneous Generalized Matsumoto Space

被引:2
|
作者
Gupta, M. K. [1 ]
Sharma, Suman [1 ]
Mofarreh, Fatemah [2 ]
Chaubey, Sudhakar Kumar [3 ]
机构
[1] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
[2] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Math Sci, Riyadh 11546, Saudi Arabia
[3] Univ Technol & Appl Sci, Dept Informat Technol, Sect Math, POB 77, Shinas 324, Oman
关键词
Minkowski space; Finsler space; homogeneous space; isometry group; Lie group; Matsumoto change; FINSLER-SPACE; HYPERSURFACE; ISOMETRIES;
D O I
10.3390/math11061316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The curvature characteristics of particular classes of Finsler spaces, such as homogeneous Finsler spaces, are one of the major issues in Finsler geometry. In this paper, we have obtained the expression for S-curvature in homogeneous Finsler space with a generalized Matsumoto metric and demonstrated that the homogeneous generalized Matsumoto space with isotropic S-curvature has to vanish the S-curvature. We have also derived the expression for the mean Berwald curvature by using the formula of S-curvature.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space
    Li, Yanlin
    Gupta, Manish Kumar
    Sharma, Suman
    Chaubey, Sudhakar Kumar
    MATHEMATICS, 2023, 11 (15)
  • [2] On Douglas Tensor of Generalized Matsumoto Finsler Space
    Gupta, M. K.
    Sahu, Abha
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 685 - 692
  • [3] φ-Sectional curvatures of homogeneous realhypersurfaces in a complex projective space
    Takagi, Ren
    JOURNAL OF GEOMETRY, 2023, 114 (03)
  • [4] Centroaffine space curves with constant curvatures and homogeneous surfaces
    Hu, Na
    JOURNAL OF GEOMETRY, 2011, 102 (1-2) : 103 - 114
  • [5] On a complex Matsumoto space
    Venkatesha, K. S.
    Narasimhamurthy, S. K.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 113 - 126
  • [6] ON GENERALIZED CURVATURES
    GROVE, VG
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 489 - 489
  • [7] INVARIANT MATSUMOTO METRICS ON HOMOGENEOUS SPACES
    Moghaddam, H. R. Salimi
    OSAKA JOURNAL OF MATHEMATICS, 2014, 51 (01) : 39 - 45
  • [8] On a hypersurface of a Matsumoto space
    Singh, UP
    Kumari, B
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (04): : 521 - 531
  • [9] A note on the generalized Matsumoto relation
    Dalyan, Elif
    Medetogullari, Elif
    Pamuk, Mehmetcik
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) : 524 - 536
  • [10] Sectional curvatures of homogeneous real hypersurfaces of types (A) and (B) in a complex projective space
    Makoto Kimura
    Sadahiro Maeda
    Hiromasa Tanabe
    Journal of Geometry, 2021, 112