Partial data inverse problems for quasilinear conductivity equations

被引:16
|
作者
Kian, Yavar [1 ]
Krupchyk, Katya [2 ]
Uhlmann, Gunther [3 ,4 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CPT, CNRS, Marseille, France
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; ELLIPTIC-EQUATIONS; CALDERON PROBLEM;
D O I
10.1007/s00208-022-02367-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the knowledge of the Dirichlet-to-Neumann maps given on an arbitrary open non-empty portion of the boundary of a smooth domain in R-n , n >= 2, for classes of semilinear and quasilinear conductivity equations, determines the nonlinear conductivities uniquely. The main ingredient in the proof is a certain L-1-density result involving sums of products of gradients of harmonic functions which vanish on a closed proper subset of the boundary.
引用
收藏
页码:1611 / 1638
页数:28
相关论文
共 50 条