Partial data inverse problems for quasilinear conductivity equations

被引:16
|
作者
Kian, Yavar [1 ]
Krupchyk, Katya [2 ]
Uhlmann, Gunther [3 ,4 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CPT, CNRS, Marseille, France
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
[4] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; ELLIPTIC-EQUATIONS; CALDERON PROBLEM;
D O I
10.1007/s00208-022-02367-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the knowledge of the Dirichlet-to-Neumann maps given on an arbitrary open non-empty portion of the boundary of a smooth domain in R-n , n >= 2, for classes of semilinear and quasilinear conductivity equations, determines the nonlinear conductivities uniquely. The main ingredient in the proof is a certain L-1-density result involving sums of products of gradients of harmonic functions which vanish on a closed proper subset of the boundary.
引用
收藏
页码:1611 / 1638
页数:28
相关论文
共 50 条
  • [1] Partial data inverse problems for quasilinear conductivity equations
    Yavar Kian
    Katya Krupchyk
    Gunther Uhlmann
    Mathematische Annalen, 2023, 385 : 1611 - 1638
  • [2] Anisotropic inverse problems for quasilinear elliptic equations
    Sun, ZQ
    SECOND INTERNATIONAL CONFERENCE ON INVERSE PROBLEMS: RECENT THEORETICAL DEVELOPMENTS AND NUMERICAL APPROACHES, 2004, 2005, 12 : 156 - 164
  • [3] Partial data inverse problems for nonlinear magnetic Schrodinger equations
    Lai, Ru-Yu
    Zhou, Ting
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05)
  • [4] A REMARK ON PARTIAL DATA INVERSE PROBLEMS FOR SEMILINEAR ELLIPTIC EQUATIONS
    Krupchyk, Katya
    Uhlmann, Gunther
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 681 - 685
  • [5] MULTIDIMENSIONAL INVERSE PROBLEMS FOR LINEAR AND QUASILINEAR PARABOLIC EQUATIONS
    ISKENDEROV, AD
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (05): : 1005 - 1008
  • [6] Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities
    Krupchyk, Katya
    Uhlmann, Gunther
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (06) : 1801 - 1824
  • [7] Partial data inverse problems for Maxwell equations via Carleman estimates
    Chung, Francis J.
    Ola, Petri
    Salo, Mikko
    Tzou, Leo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03): : 605 - 624
  • [8] Integral equations for inverse problems in corrosion detection from partial Cauchy data
    Cakoni, Fioralba
    Kress, Rainer
    INVERSE PROBLEMS AND IMAGING, 2007, 1 (02) : 229 - 245
  • [9] INVERSE PROBLEMS WITH PARTIAL DATA IN A SLAB
    Li, Xiaosheng
    Uhlmann, Gunther
    INVERSE PROBLEMS AND IMAGING, 2010, 4 (03) : 449 - 462
  • [10] THE EXISTENCE OF SOLUTIONS OF INTEGRAL EQUATIONS RELATED TO INVERSE PROBLEMS OF QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS
    Usami, Hiroyuki
    Yoshimi, Takuro
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2012, 57 : 163 - 176