Elucidating the mechanism underlying the augmented capacity of MoO2 as an anode material in Li-ion batteries

被引:9
|
作者
Wang, Hua [1 ,2 ]
Hao, Wei [3 ]
Li, Tianyi [4 ]
Li, Xintong [1 ]
Chang, Kai [1 ]
Zhou, Xinwei [5 ]
Hou, Dewen [5 ]
Hashem, Ahmed M. [6 ]
Hwang, Gyeong S. [3 ]
Liu, Yuzi [5 ]
Sun, Cheng-Jun [4 ]
Abdel-Ghany, Ashraf E. [6 ]
El-Tawil, Rasha S. [6 ]
Mohamed, Hanaa Abuzeid [6 ]
Abbas, Somia M. [6 ]
Mullins, C. Buddie [3 ]
Julien, Christian M. [7 ]
Zhu, Likun [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Mech & Energy Engn, Indianapolis, IN 46202 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Univ Texas Austin, Dept Chem Engn & Chem, Austin, TX 78712 USA
[4] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[5] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[6] Natl Res Ctr, Inorgan Chem Dept, 33 El Bohouth St, Dokki Giza 12622, Egypt
[7] Sorbonne Univ, Inst Mineral Phys Mat & Cosmol IMPMC, UMR CNRS 7590, 4 Pl Jussieu, F-75752 Paris, France
关键词
ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; CYCLIC STABILITY; METAL FLUORIDES; TIO2; ANATASE; NANO-IONICS; LITHIUM; STORAGE; NANOPARTICLES; CARBON;
D O I
10.1039/d3ta04794f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal oxide anode materials have been observed to possess an intriguing surplus of capacity beyond the expected values based on conversion reaction. However, the mechanisms behind this phenomenon have remained contentious and elusive. This study focuses on synthesized nanosized molybdenum dioxide and its electrochemical performance as an anode material for Li-ion batteries. Our findings reveal a substantial increase in capacity upon cycling, achieving approximately 1688 mA h g(-1), nearly double the theoretical capacity, after 700 cycles at a 1C rate. To elucidate the mechanisms underlying this augmented capacity, a comprehensive analysis employing in situ and ex situ X-ray diffraction, X-ray absorption spectroscopy, scanning electron microscopy, and transmission electron microscopy was conducted at various stages of the Li-ion cell cycling. Our results indicate that no conversion reaction occurs during the initial discharge phase, with Li2O and Mo remaining undetected. Instead, Li0.98MoO2 is generated upon lithiation. Further materials characterization employing electron energy loss spectroscopy and energy-dispersive X-ray spectroscopy on the cycled electrode suggests the potential formation of a metallic Li-rich layer at the interface of the Li-ion intercalated phase subsequent to the formation of Li0.98MoO2, contributing to the surplus Li storage. Moreover, electrochemical impedance spectroscopy coupled with ex situ SEM and TEM analyses reveals that alterations in particle size and morphology, along with changes in the solid electrolyte interphase (SEI) resistance, are instrumental in the capacity variation observed upon cycling.
引用
收藏
页码:23012 / 23025
页数:14
相关论文
共 50 条
  • [41] Novel spherical microporous carbon as anode material for Li-ion batteries
    Wang, Q
    Li, H
    Chen, LQ
    Huang, XJ
    SOLID STATE IONICS, 2002, 152 : 43 - 50
  • [42] Synthesis of nanosized Si composite anode material for Li-ion batteries
    He, Xiangming
    Pu, Weihua
    Ren, Jianguo
    Wang, Li
    Jiang, Changyin
    Wan, Chunrong
    IONICS, 2007, 13 (01) : 51 - 54
  • [43] VS2/Graphene Heterostructures as Promising Anode Material for Li-Ion Batteries
    Mikhaleva, Natalia S.
    Visotin, Maxim A.
    Kuzubov, Aleksandr A.
    Popov, Zakhar I.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (43): : 24179 - 24184
  • [44] Electrochemical performances and mechanisms of MnSn2 as anode material for Li-ion batteries
    Mahmoud, Abdelfattah
    Chamas, Mohamad
    Jumas, Jean-Claude
    Philippe, Bertrand
    Dedryvere, Remi
    Gonbeau, Danielle
    Saadoune, Ismael
    Lippens, Pierre-Emmanuel
    JOURNAL OF POWER SOURCES, 2013, 244 : 246 - 251
  • [45] α-Fe2O3 nanoflakes as an anode material for Li-ion batteries
    Reddy, M. V.
    Yu, Ting
    Sow, Chorng-Haur
    Shen, Ze Xiang
    Lim, Chwee Teck
    Rao, G. V. Subba
    Chowdari, B. V. R.
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (15) : 2792 - 2799
  • [46] Synthesis of nanosized Si composite anode material for Li-ion batteries
    Xiangming He
    Weihua Pu
    Jianguo Ren
    Li Wang
    Changyin Jiang
    Chunrong Wan
    Ionics, 2007, 13 : 51 - 54
  • [47] Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries
    Tesfaye, Alexander T.
    Gonzalez, Roberto
    Coffer, Jeffery L.
    Djenizian, Thierry
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (37) : 20495 - 20498
  • [48] Substoichiometric Silicon Nitride -An Anode Material for Li-ion Batteries Promising High Stability and High Capacity
    Ulvestad, Asbjorn
    Andersen, Hanne F.
    Jensen, Ingvild J. T.
    Mongstad, Trygve T.
    Maehlen, Jan Petter
    Prytz, Oystein
    Kirkengen, Martin
    SCIENTIFIC REPORTS, 2018, 8
  • [49] Substoichiometric Silicon Nitride – An Anode Material for Li-ion Batteries Promising High Stability and High Capacity
    Asbjørn Ulvestad
    Hanne F. Andersen
    Ingvild J. T. Jensen
    Trygve T. Mongstad
    Jan Petter Mæhlen
    Øystein Prytz
    Martin Kirkengen
    Scientific Reports, 8
  • [50] 2D Homogeneous Holey Carbon Nitride: An Efficient Anode Material for Li-ion Batteries With Ultrahigh Capacity
    Ghosh, Atish
    Mandal, Sampad
    Sarkar, Pranab
    CHEMPHYSCHEM, 2022, 23 (15)