Next generation pan-cancer blood proteome profiling using proximity extension assay

被引:19
|
作者
Alvez, Maria Bueno [1 ]
Edfors, Fredrik [1 ]
von Feilitzen, Kalle [1 ]
Zwahlen, Martin [1 ]
Mardinoglu, Adil [1 ,2 ]
Edqvist, Per-Henrik [3 ]
Sjoblom, Tobias [3 ]
Lundin, Emma [3 ]
Rameika, Natallia [3 ]
Enblad, Gunilla [3 ]
Lindman, Henrik [3 ]
Hoglund, Martin [4 ]
Hesselager, Goran [4 ]
Stalberg, Karin [5 ]
Enblad, Malin [6 ]
Simonson, Oscar E. [6 ]
Haggman, Michael [6 ]
Axelsson, Tomas [4 ]
Aberg, Mikael [7 ]
Nordlund, Jessica [4 ]
Zhong, Wen [8 ]
Karlsson, Max [1 ]
Gyllensten, Ulf [3 ]
Ponten, Fredrik [3 ]
Fagerberg, Linn [1 ]
Uhlen, Mathias [1 ,9 ]
机构
[1] KTH Royal Inst Technol, Dept Prot Sci, Sci Life Lab, Stockholm, Sweden
[2] Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England
[3] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden
[4] Uppsala Univ, Dept Med Sci, Uppsala, Sweden
[5] Uppsala Univ, Dept Womens & Childrens Hlth, Uppsala, Sweden
[6] Uppsala Univ, Dept Surg Sci, Uppsala, Sweden
[7] Uppsala Univ, Dept Med Sci, Clin Chem & SciLifeLab Affin Prote, Uppsala, Sweden
[8] Linkoping Univ, Dept Biomed & Clin Sci BKV, Sci Life Lab, Linkoping, Sweden
[9] Karolinska Inst, Dept Neurosci, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
MODELS;
D O I
10.1038/s41467-023-39765-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Comprehensive and scalable proteomic profiling of plasma samples can improve the screening and diagnosis of cancer patients. Here, the authors use the Olink Proximity Extension Assay technology to characterise the plasma proteomes of 1477 patients across twelve cancer types, and use machine learning to obtain a protein panel for cancer classification. A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Pan-cancer mesenchymal assay to predict response to MEK inhibitors.
    McCabe, Nuala
    Knight, Laura A.
    Perez, Lara Dura
    Price, Bethanie
    McCavigan, Andrena
    El-Helali, Aya
    Eddie, Sharon
    Gourley, Charlie
    Harkin, Denis P.
    Kennedy, Richard D.
    JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (15)
  • [42] Twist pan-cancer synthetic RNA fusion control for assay development
    Cherry, Patrick Daniel
    Corwin, Jason
    Fuhrman, Kit
    Challacombe, Jean
    Murphy, Derek
    Toro, Esteban
    CANCER RESEARCH, 2023, 83 (07)
  • [43] Aristotle: A single blood test for pan-cancer screening.
    Dempsey, Adam A.
    Tripp, James Howard
    Chao, Samuel
    Stamatiou, Dimitri
    Pilcz, Tanya
    Ying, Jay
    Burakoff, Robert
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [44] Analytical validation of an integrated next-generation sequencing pan-cancer liquid biopsy approach for detection of microsatellite instability
    Georgiadis, Andrew
    Wood, Derrick
    Murphy, Derek
    Parpart-Li, Sonya
    Riley, David
    Sengamalay, Naomi
    Novak, Marian
    Jones, Sian
    Angiuoli, Samuel A.
    Sausen, Mark
    CANCER RESEARCH, 2018, 78 (13)
  • [45] Pan-Cancer Profiling of Intron Retention and Its Clinical Significance in Diagnosis and Prognosis
    Huang, Leihuan
    Zeng, Xin
    Ma, Haijing
    Yang, Yu
    Akimoto, Yoshie
    Wei, Gang
    Ni, Ting
    CANCERS, 2023, 15 (23)
  • [46] A pan-cancer somatic mutation embedding using autoencoders
    Martin Palazzo
    Pierre Beauseroy
    Patricio Yankilevich
    BMC Bioinformatics, 20
  • [47] A pan-cancer somatic mutation embedding using autoencoders
    Palazzo, Martin
    Beauseroy, Pierre
    Yankilevich, Patricio
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [48] Analytic validation and implementation of OncoDEEP: A pan-cancer comprehensive genomic profiling NGS assay for assessing homologous recombination deficiency (HRD)
    Trautmann, M.
    Falkenberg, K.
    Braun, L.
    Puller, A-C.
    Kirmse, S.
    Heinst, L.
    Berthold, R.
    Isfort, I.
    Abbas, M.
    Wardelmann, E.
    Hartmann, W.
    ANNALS OF ONCOLOGY, 2023, 34 : S728 - S728
  • [49] Pan-cancer microsatellite instability testing using a multiplex assay including long mononucleotide repeats.
    Deming, Dustin A.
    Bacher, Jeff
    Vyazunova, Irina
    Albrecht, Dawn
    Buratti, Madeleine
    Ruelle, Laura
    Pasch, Cheri
    Snow, Santina
    Matkowskyj, Kristina
    Sappenfield, Ryan
    Halberg, Richard
    JOURNAL OF CLINICAL ONCOLOGY, 2025, 43 (4_SUPPL) : 290 - 290
  • [50] Comprehensive profiling of pathogenic germline large genomic rearrangements in a pan-cancer analysis
    Sun, Zhe
    Bai, Chujie
    Su, Miaoyi
    Tang, Haimeng
    Wu, Xiaoying
    Wang, Yue
    Bao, Hua
    Liu, Xunbiao
    Wu, Xue
    Shao, Yang
    Xu, Bei
    MOLECULAR ONCOLOGY, 2023, 17 (09) : 1917 - 1929