共 50 条
Next generation pan-cancer blood proteome profiling using proximity extension assay
被引:19
|作者:
Alvez, Maria Bueno
[1
]
Edfors, Fredrik
[1
]
von Feilitzen, Kalle
[1
]
Zwahlen, Martin
[1
]
Mardinoglu, Adil
[1
,2
]
Edqvist, Per-Henrik
[3
]
Sjoblom, Tobias
[3
]
Lundin, Emma
[3
]
Rameika, Natallia
[3
]
Enblad, Gunilla
[3
]
Lindman, Henrik
[3
]
Hoglund, Martin
[4
]
Hesselager, Goran
[4
]
Stalberg, Karin
[5
]
Enblad, Malin
[6
]
Simonson, Oscar E.
[6
]
Haggman, Michael
[6
]
Axelsson, Tomas
[4
]
Aberg, Mikael
[7
]
Nordlund, Jessica
[4
]
Zhong, Wen
[8
]
Karlsson, Max
[1
]
Gyllensten, Ulf
[3
]
Ponten, Fredrik
[3
]
Fagerberg, Linn
[1
]
Uhlen, Mathias
[1
,9
]
机构:
[1] KTH Royal Inst Technol, Dept Prot Sci, Sci Life Lab, Stockholm, Sweden
[2] Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England
[3] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden
[4] Uppsala Univ, Dept Med Sci, Uppsala, Sweden
[5] Uppsala Univ, Dept Womens & Childrens Hlth, Uppsala, Sweden
[6] Uppsala Univ, Dept Surg Sci, Uppsala, Sweden
[7] Uppsala Univ, Dept Med Sci, Clin Chem & SciLifeLab Affin Prote, Uppsala, Sweden
[8] Linkoping Univ, Dept Biomed & Clin Sci BKV, Sci Life Lab, Linkoping, Sweden
[9] Karolinska Inst, Dept Neurosci, Stockholm, Sweden
基金:
瑞典研究理事会;
关键词:
MODELS;
D O I:
10.1038/s41467-023-39765-y
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Comprehensive and scalable proteomic profiling of plasma samples can improve the screening and diagnosis of cancer patients. Here, the authors use the Olink Proximity Extension Assay technology to characterise the plasma proteomes of 1477 patients across twelve cancer types, and use machine learning to obtain a protein panel for cancer classification. A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
引用
收藏
页数:13
相关论文