Two problems on the greatest prime factor of n2+1

被引:0
|
作者
Harman, Glyn [1 ]
机构
[1] Univ London, Royal Holloway, Dept Math, Egham TW20 0EX, Surrey, England
关键词
prime; quadratic polynomial; SMOOTH VALUES; NUMBER;
D O I
10.4064/aa230710-18-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P+(m) denote the greatest prime factor of the positive integer m. In [Arch. Math. (Basel) 90 (2008), 239-245] we improved work of Dartyge [Acta Math. Hungar. 72 (1996), 1-34] to show that |{n <= x : P+(n(2) + 1) < x(alpha)}| >> x for alpha > 4/5. In this note we show how the recent work of de la Bret & egrave;che and Drappeau [J. Eur. Math. Soc. 22 (2020), 1577-1624] (which uses the improved bound for the smallest eigenvalue in the Ramanujan-Selb erg conjecture given by Kim [J. Amer. Math. Soc. 16 (2003), 139-183]) along with a change of argument can be used to reduce the exponent to 0.567. We also show how recent work of Merikoski [J. Eur. Math. Soc. 25 (2023), 1253-1284] on large values of P+(n(2) + 1) can improve work by Everest and the author [London Math. Soc. Lecture Note Ser. 352, Cambridge Univ. Press, 2008, 142-154] on primitive divisors of the sequence n(2) + 1.
引用
收藏
页码:273 / 287
页数:16
相关论文
共 50 条
  • [31] ARITHMETIC FUNCTIONS AND THE GREATEST PRIME FACTOR
    DEKONINCK, JM
    MERCIER, A
    ACTA ARITHMETICA, 1989, 52 (01) : 25 - 48
  • [32] MULTIDIMENSIONAL GREATEST PRIME FACTOR SEQUENCES
    Caragiu, Mihai
    Sutherl, Lauren
    Zaki, Mohammad
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 23 (02): : 187 - 195
  • [33] ON GREATEST PRIME FACTOR OF A QUADRATIC POLYNOMIAL
    HOOLEY, C
    ACTA MATHEMATICA UPPSALA, 1967, 117 : 281 - &
  • [34] GREATEST PRIME FACTOR OF CONSECUTIVE INTEGERS
    LANGEVIN, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (23): : 1567 - 1570
  • [35] GREATEST AND LEAST PRIME FACTORS OF N-EXCLAMATORY+1
    ERDOS, P
    STEWART, CL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1976, 13 (AUG): : 513 - 519
  • [36] Square-free values of n2+1
    Heath-Brown, D. R.
    ACTA ARITHMETICA, 2012, 155 (01) : 1 - 13
  • [37] SOME OBSERVATIONS ON THE GREATEST PRIME FACTOR OF AN INTEGER
    Jakimczuk, Rafael
    ANNALES MATHEMATICAE SILESIANAE, 2023, 37 (01) : 67 - 81
  • [38] On the Greatest Prime Factor of Some Divisibility Sequences
    Akbary, Amir
    Yazdani, Soroosh
    SCHOLAR - A SCIENTIFIC CELEBRATION HIGHLIGHTING OPEN LINES OF ARITHMETIC RESEARCH, 2015, 655 : 1 - 13
  • [39] On the greatest prime factor of Markov pairs.
    Corvaja, Pietro
    Zannier, Umberto
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2006, 116 : 253 - 260
  • [40] On the greatest prime factor of axm+byn
    Bugeaud, Y
    NUMBER THEORY: DIOPHANTINE, COMPUTATIONAL AND ALGEBRAIC ASPECTS, 1998, : 115 - 122