Dynamical system approach of interacting dark energy models with minimally coupled scalar field

被引:10
|
作者
Samaddar, Amit [1 ]
Singh, S. Surendra [1 ]
Alam, Md Khurshid [1 ]
机构
[1] Natl Inst Technol Manipur, Dept Math, Imphal 795004, India
来源
关键词
f(Q) gravity theory; dark matter and dark energy; dynamical system analysis; hybrid expansion law; energy conditions; statefinder parameters; PROBE WMAP OBSERVATIONS; STABILITY ANALYSIS; STATEFINDER; SUPERNOVAE; UNIVERSE;
D O I
10.1142/S0218271823500621
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigated the stability condition of f(Q) gravity theory with interacting and noninteracting models by using dynamical system. We assume the f(Q) function as f(Q) = (root Q + M/2)(2), where M is the free parameter. We evaluated the critical points for this model and examined the stability behavior. We found two stable critical points for interacting model. The phase plots for this system are examined and the physical interpretation is discussed. We illustrate all the cosmological parameters such as Omega(m), Omega(phi), q and omega(Tot) at each fixed point and compare the parameters with observational values. Further, we assume hybrid scale factor and the equation of redshift and time is t(z) = mu/nu W[nu(1+z)(-m/mu)/mu]. We transform all the parameters in terms of redshift by using this equation and examine the behavior of these parameters. Our model represents the accelerated expansion of the universe. The energy conditions are examined in terms of redshift and strong energy conditions are not satisfied for the model. We also find the statefinder parameters {r, s} in terms of z and discuss the nature of r-s and r-q plane. For both pairs {r, s} and {r, q} our model represents the Lambda CDM model. Hence, we determine that our f(Q) model is stable and it satisfies all the observational values.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Correspondence of pilgrim dark energy with scalar field models
    Abdul Jawad
    Asim Majeed
    Astrophysics and Space Science, 2015, 356 : 375 - 381
  • [32] Scalar field descriptions of two dark energy models
    Panotopoulos, Grigorios
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [33] Correspondence of pilgrim dark energy with scalar field models
    Jawad, Abdul
    Majeed, Asim
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 356 (02) : 375 - 381
  • [34] Polytropic Gas Scalar Field Models of Dark Energy
    M. Malekjani
    International Journal of Theoretical Physics, 2013, 52 : 2674 - 2685
  • [36] Scalar field description for parametric models of dark energy
    Barboza, E. M., Jr.
    Santos, B.
    Costa, F. E. M.
    Alcaniz, J. S.
    PHYSICAL REVIEW D, 2012, 85 (10)
  • [37] Interacting models of dark energy and dark matter in Einstein scalar Gauss Bonnet gravity
    Hussain, Saddam
    Arora, Simran
    Rana, Yamuna
    Rose, Benjamin
    Wang, Anzhong
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (11):
  • [38] Approximation of the potential in scalar field dark energy models
    Battye, Richard A.
    Pace, Francesco
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [39] Nonextensive scalar field theories and dark energy models
    Beck, C
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 459 - 466
  • [40] Distinguishing among scalar field models of dark energy
    Maor, I
    Brustein, R
    PHYSICAL REVIEW D, 2003, 67 (10)